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Chapter 1

Introduction

1.1 Project Description

In this report Resonant Tunneling Diodes (RTDs) will be treated. This includes a description
of the basic operational principles and a theoretical treatment of the fundemental quantum
mechanical processes responsible for the operation of the device. The report will include a
theoretical treatment of the following aspects:

1. Tunneling through arbitrarily formed potential barriers will be described using the trans-
fer matrix formalism.

2. The resonant tunneling current will be calculated using the transfer matrix method.

3. Peak to valley ratios of an ideal RTD will be calculated on basis of the current calculations.

4. It will be shown that RTDs exhibit negative di�erential resistance in certain regions.

A program has been written in Matlab for calculation of global transmission coe�cients through
structures with an arbitrary number of barriers and wells and with or without an applied �eld.
For the calculations the transfer matrix formalism has been used. Using the results of the
Matlab program the current through an RTD has been calculated.

A .pdf version of this work is available at www.repetit.dk.

1.2 Tunneling Basics

Tunneling is a purely quantum mechanical phenoma which enables electrons to penetrate
potential barriers even though it is classically forbidden. The scheme is illustrated in Figure 1.1.
Classically the electron would be re�ected if E < V0 but due to tunneling there is a probability
that the electron penetrates the barrier. On the other hand, clasically, if the electron has an
energy E > V0 it is certain to be transmitted through the barrier, but in quantum mechanics
there is a probability of re�ection even when the energy exceeds the barrier height.

Tunneling through a potential barrier is characterized by a transmission coe�cient T so that
0 ≤ T ≤ 1. The transmitted wavefunction ψT is thus given by TψI where ψI is the wavefunction
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Transmitted electronIncident electron of energy E

V0

Figure 1.1: The basics of tunneling. An electron of energy E is incident on a potential barrier
of height V0. Classically the electron is re�ected when E < V0, but quantum mechanically there
is a certain probability that the electron is transmitted through the barrier.

of the incident particle. In a single barrier structure like the one described here the transmission
coe�cient is a monotonically increasing function of E when E < V0 (T (E1) > T (E2) ∀ E1 >
E2|V0 > E1).

Transmitted electronIncident electron of energy E

E3

E2

E1

Figure 1.2: Tunneling through a double barrier. If T � 1 for both barriers the region between
the two barriers will act as a quantum well with quantized energy levels. This gives rise to
resonant tunneling.

A double barrier structure like the one shown in Figure 1.2 gives rise to a QM phenomena
called resonant tunneling. If the transmission coe�cients of the left and right barriers, TL

and TR respectively, are both much smaller than unity a quantum well arises in between the
barriers. This means that the energy levels in the well will be quantized. Strictly speaking this
is not entirely true because TR and TL are in fact, of course, not equal to zero. This means
that the energy levels are not clearly de�ned, there is some broadening of the levels. These
energy levels will in the rest of the text be referred to as quasi-quantized energy levels and
the bound states in the well will be referred to as quasi-bound states. When an electron with
an energy which is not coincident with one of the quasi-quantized levels in the well is incident
on the barrier/well complex the global transmission coe�cient TG is much smaller than unity.
If however, the electron energy coincides with one of the energy levels in the well, resonance
occurs and the electron can be transmitted with a transmission coe�cient on the order of unity.
This is the type of structure which is utilized in resonant tunneling diodes.

1.3 Resonant Tunneling Diodes and Double Barriers under

Applied Voltage

Typically, in resonant tunneling diodes, the electrons come from a doped semiconductor or a
metal material. The energy of the electrons can be raised by increasing the temperature or by
exciting them with light, but typically it is more convenient to raise the energy by applying a
voltage accross the structure. This however dramatically impacts the double barrier structure,
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as is apparent from Figure 1.3. The symmetry in the system is destroyed because the two
barriers no longer have the same height and therefore not the same transmission coe�cient.
This obviously has an impact on the energy levels in the well, and in general it will be much
more di�cult to obtain a global transmission coe�cient TG ≈ 1. This e�ect of the applied �eld
can be compensated for by adjusting the width of the left barrier to make it thinner than the
right one, and thereby obtain equal transmission coe�cients. [6].

d w d

PT

E1

E3

E2

Figure 1.3: Double barrier with an applied �eld. In a doped semiconductor or a metal the point
marked PT will be the bottom of the conduction band, and this is from where tunneling takes
place.

One of the most interesting features of resonant tunneling diodes is the existence of a negative
di�erential region, where the current drops when the potential increases. This is due to the
nature of resonant tunneling. When the current is at a maximum the energy of the incoming
electrons is equal to one of the quasi-bound states. When the potential increases further the
electron energy gets more and more out of alignment with the quasi-bound states and the
current drops accordingly. A typical IV-curve of an RTD is shown in Figure 1.4. When the
voltage becomes high enough thermionic emission current becomes dominant and the current
increases rapidly. [5]

One of the characteristics of RTDs is the peak to valley ratio. It is desirable to have the peak
current as large as possible and the valley current as small as possible because this makes
the negative di�erential resistance region more clearly de�ned. This relationship is expressed
through the peak-to-valley ratio which should be high for a good RTD. Theoretical calculations
predict ratios of as much as 1000 but in experiments this is much lower. The many experimental
di�culties in producing RTDs can explain this discrepancy. Since the function of the diodes
depends on quantum tunneling, the width of the barrier layers is critical. Typical widths of
barrier layers are 20 Å or 40 Å [2] [8] and producing such thin layers to an adequate precision
is di�cult.

Another interesting feature of RTDs is their operation speed. RTDs with 712 GHz oscillation,
response in the THz range and 1.5 ps switching times have been reported. The operation speed
of an RTD is determind by two factors. The �rst one is the tunneling time which is the time
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Figure 1.4: A typical RTD IV-curve. At a certain applied voltage the current reaches a max-
ium, further increase of the voltage causes a decrease of current. This is the negative di�er-
ential region. Increasing the voltage even further causes the current to increase rapidly due to
thermionic emission.

it takes an electron to tunnel through the barrier structure. The second factor is the time it
takes to charge the RTD. The time it takes to tunnel through the barrier structure is on the
order of the life time of a state in the well and this litetime is given by [3]

tlife =
~
Γ0

(1.1)

where Γ0 is the half width of the resonance peak of the energy state in question. The resonance
peaks will be sharper for high and wide barriers, this means that the tunneling time can be
shortened by making the barriers lower and more narrow. This however, is a tradeo� between
peak-to-valley ratio and tunneling time. Usually it will not be the tunneling time but the
recharge time which puts a limit to the response times of RTDs.

In the production of RTDs n-type GaAs is typically chosen as the electron donor material.
The potential barriers are formed by introducing epitaxial layers of Ga1−xGaxAs. Al is chosen
due to its similarity to Ga. The properties of the chemical bonds they form are similar, and
they have similar ion sizes. Therefore introduction of Al makes the least disturbance to the
continuity of the structure and generally results in higher quality �lms. [2]
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Chapter 2

Theory

2.1 Transfer Matrix Formalism of Quantum Tunneling

2.1.1 Constant Potential

In this section the transfer matrix formulation of quantum tunneling will be described and
the results derived [3] [1]. To describe the technique the simple scenario in Figure 2.1 will be
considered.

x=a
x’=0

x=0

1 2 3

Figure 2.1: Tunneling through a single barrier.

In region 1 the wave function is termed ψ1 and the potential is zero, in region 2 the wave
function is termed ψ2 and the potential is V0 and in region 3 the wave function is termed
ψ3 and the potential is again zero. The solutions to the Schrödinger equation in these three
regions are

ψ1 = Aeik1x +Be−ik1x (2.1)

ψ2 = Ceik2x +De−ik2x (2.2)

ψ3 = Feik3x +Ge−ik3x (2.3)

(2.4)

where ki =
√

2m (E − Vi). The wave function and its derivative is required to be continous
at the discontinuity between adjacent regions, ie. at x = 0 and x = a. This requirement is
imposed in order to avoid abrubt changes in probability density. Using these two continuity
conditions between region 1 and 2 yields the two equations
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ψ1(0) = ψ2(0) and
dψ1

dx

∣∣∣
x=0

=
dψ2

dx

∣∣∣
x=0

(2.5)

Which gives the following restrictions on the coe�cients

A+B = C +D (2.6)

ik1A− ik1B = ik2C − ik2D (2.7)

These conditions can be written in matrix form

(
1 1
ik1 −ik1

)
·
(
A
B

)
=
(

1 1
ik2 −ik2

)
·
(
C
D

)
(2.8)

Using the inverse matrix theorem an expression connecting coe�cients (A,B) with (C,D) can
be obtained

(
A
B

)
=

1
2

(
1 + k2

k1
1− k2

k1

1− k2
k1

1 + k2
k1

)
·
(
C
D

)
= M12 ·

(
C
D

)
(2.9)

The matrix M12 is known as the discontinuity matrix and it connects the wave function in
region 1 with the wave function in region 2, ie. it describes the propagation of the wave function
across a boundary.

The wave function is also required to be continous across the boundary between region 2 and
region 3. A new coordinate system (coordinates in this new system are marked with a prime)
is chosen so that x′ = 0 at x = a and the primed coordinate system is therefore related to the
unprimed one by x′ = x− a. The continuity conditions are then

ψ′2(0) = ψ′3(0) and
dψ′2
dx′

∣∣∣
x′=0

=
dψ′3
dx′

∣∣∣
x′=0

(2.10)

where ψ′2 and ψ
′
3 are the wave functions in the new primed coordinate systems. These conditions

yields a matrix similar to M12 in Equation 2.9. To obtain a connection between the primed
wave function and the unprimed one the relation ψ2(x) = ψ′2(x− a) is exploited

Ceik2x +De−ik2x = C ′eik2(x−a) +D′e−ik2(x−a) (2.11)

Or, written in matrix form

(
eik2x e−ik2x

)
·
(
C
D

)
=
(
eik2x e−ik2x

)
·
(
C ′e−ik2a

D′eik2a

)
· (2.12)
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Cancelling the row vector it is seen that the relation between the primed and unprimed coor-
dinates is described by

(
C
D

)
=
(
e−ik2a 0

0 eik2a

)
·
(
C ′

D′

)
= MP ·

(
C ′

D′

)
(2.13)

where MP is called the propagation matrix. It describes the propagation of the wave function
between two boundaries and a is the distance between the points to be connected. In the case
considered here it describes the propagation of the wave function inside the barrier. When
inside a barrier the ki's are purely imaginary and the matrix becomes an operator scaling the
operand by an exponentially decaying factor, which is the behaviour expected from a matrix
describing propagation within a potential barrier. The matrix MP can equally well be used
to describe propagation inside a quantum well, in which case it modulates the operand by a
plane wave, ie. it is a phase-shift operator .

As an example consider a situation like the one depicted in Figure 1.2. The left region of zero
potential is labelled 1, the left barrier 2, the zero potential well 3, the right barrier 4 and the
right region of zero potential 5. The system matrix (the matrix describing propagation through
the whole system from 1 to 5) is then given by

MS = M12 ·MB ·M23 ·MW ·M34 ·MB ·M45 (2.14)

The coe�cients (A,B) are therefore related to the coe�cients (F,G) by

(
A
B

)
= MS ·

(
F
G

)
(2.15)

The transmission coe�cient of a barrier is equal to the square of the transmitted wave, divided
by the square of the incoming wave. Setting G equal to zero because there is no incoming wave
in region 5 the transmission coe�cient through the whole system can be expressed as

T =
|Feik1x|2

|Aeik5x|2
=
F ∗F

A∗A
(2.16)

where ∗ denotes complex conjugate. From Equation 2.15 it is seen that A = MS,11F (G is
zero), therefore

T =
F ∗F

(MS,11F )∗(MS,11F )
=

1
M∗

S,11MS,11
=

1
|MS,11|2

(2.17)

2.1.2 Arbitrary Potential

In the last section the potential considered was of rectangular shape. In this section the results
will be generalized to potentials of arbritrary shape. The generalization is not very di�cult,
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the arbitrary potential is divided into a number of square potential barrier divisions of width d
and separated by quantum wells of width w. The system matrix is then calculated in the limit
when w goes to zero, corresponding to the barriers being in�nitely close together (no quantum
well between them). The matrix of an abritrary barrier can then be calculated by

MS = M12 ·MB2 ·M23 ·MW3 ·M34 ·MB4 ·M45... (2.18)

where MS denotes the system matrix, ie. the matrix describing the propagation of the wave
function through the whole system of barriers and wells. When the well depth goes to zero
the MWx matrices become unit matrices, as is clearly seen from Equation 2.13. This leaves
behind the expression

MS = M12 ·MB2 ·M23 ·M34 ·MB4 ·M45... (2.19)

The product of the two matrices M23M34 is a product of two propagation matrices (Equation
2.9). Multiplying the two matrices gives the matrix

M24 = M23 ·M34 =
1

2k2

(
k2 + k4 k2 − k4

k2 − k4 k2 + k4

)
(2.20)

Taking the limit when d (the barrier division width) goes to zero would produce an in�nite
number of matrices so a �nite width has to be chosen. The number of square barriers to divide
each arbitrary barrier into to obtain correct results depend on the arbitraryness of the barrier.
A parabolic shaped potential requires more divisions than a barrier where one side is at only a
sligthly lower potential than the other side to get valid results. Generally, in situations where
the barriers change rapidly more barrier divisions are required to obtain correct results. In the
transfer matrix method no approximations have been made, this means that the accuracy is
determined solely by the number of divisions into which arbitrary potentials are divided.

2.2 Current in a Resonant Tunneling Diode

To calculate the tunneling current through the multibarrier complex it is necessary to consider
the Fermi distributions in the semiconductor or metal structures surrounding the barriers. The
Fermi distributions give the probability that an electron state of a certain energy is occupied.
If the Fermi distribution on the left hand side is termed fL and the distribution on the right
hand side fR the tunneling current is proportional to

I ∝
∞∫
0

T (E) [fL (E)− fR (E)]D(E)dE (2.21)

where D(E) is the density of states (DOS) and T (E) is the probability of tunneling for an
electron of energy E. For an electron to travel through the barrier complex there has to be an
electron with an appropriate energy in the electron donor material and an unoccopied electron
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level for this electron in the acceptor material. This behaviour is taken care of by the term in
the sharp parentheses. When fL(E) = 1 and fR(E) = 0 an electron can travel from left to
right. When fL(E) and fR(E) are both zero or both unity the electron with energy E does
not contribute to the total current. The Fermi distributions for the left and right hand sides
are given by

fL(E) =
1

e(E+eV−EF )/kT + 1
and fR(E) =

1
e(E−EF )/kT + 1

(2.22)

where EF is the fermi energy under zero applied �eld. Electrons in the left hand side will have
an energy which di�ers from the zero �eld case by −eV . Assuming that a potential V < 0 is
applied to the left metal (the right metal being grounded), the electrons are raised to higher
energy levels and the fermi energy increases accordingly. This means that the fermi energy
will be higher in the left metal than in the right one, thus the di�erence between the fermi
distributions on the left and right. The density of states D(E) for a free electron Fermi gas in
three dimensions is given by

D(E) =
√

2m3/2
e

π2~3

√
E − ECθ(E − EC) (2.23)

where EC is the energy of the conduction band bottom and θ(E − EC) is the heaviside step
function. When the energy E is lower than the conduction band edge the density of states is
zero. If all energies are measured relative to the conduction band bottom the DOS expression
reduce to

D(E) =
√

2m3/2
e

π2~3

√
E (2.24)

Inserting this in the expression for the current gives

I ∝
∞∫
0

T (E) [fL (E)− fR (E)]
√
EdE (2.25)

Where the constants from the DOS expression have been omitted because they make no dif-
ference for the proportionality.
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Chapter 3

Calculations and Discussion

3.1 Method of Calculation

To calculate the tunneling probabilities through the barrier complex the method described in
Section 2.1 is used. The barriers and the wells are in all applied �eld calculations divided into
30 divisions, which should be enough when the barriers and wells are simply trapezoid. Had
the barriers been of a more complicated shape a higher number of divisions would be needed.
Generally the number of divisions necessary depends on how rapidly the barrier shape varies
with position. The following calculations are made

1. Transmission and current calculations of double and triple and �ve barrier structures
with no applied �eld

2. Transmission and current calculations of double and triple barrier structures under an
applied �eld

3. Current calculations of a double barrier structure with a 100 Å well to investigate the
in�uence of well width on the number of quasi bound states

In all cases, except for number 3 where the barrier width was set to 100 Å, the barriers were
of width 20 Å, the wells were of width 50 Å and the barrier height was 0.5 eV as in [8]. All
graphs are plotted on a logarithmic scale. The electron e�ective mass used was 0.066me [4].

As described in the theory chapter the current can be calculated from Equation 2.25. Since
there is no analytical expression for T (E) the integration will have to be carried out numerically.

The piece of Matlab code responsible for calculation of transmission coe�cient is the most
central part of the code. The code can be found in Appendix A.

3.2 TG and Current Calculations with no Applied Field

In this section the calculations of transmission coe�cient under zero applied �eld are presented.
The calculations are made for double, triple and �ve barrier structures. The graphs have been
made by dividing the interval 0.05 eV to 0.6 eV into 100000 points. This should be enough to
get all the details of the spectrum even though the resonance peaks are very sharp.
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In Figure 3.1 the transmission coe�cient (TG) plots under zero applied �eld are shown. No
interesting details are seen above 0.6 eV where the transmission coe�cient becomes very close
to unity for all energies. This is because the barrier height was set to 0.5 eV and energies
higher than this will produce transmission coe�cients on the order of unity.

The immediately apparent di�erence between the three plots is the splitting of the peaks into
several closely spaced peaks when more barriers are added. The number of closely spaced peaks
equals the number of barriers minus one.

In the double barrier case the peaks are located where true bound eigenstates would be located
if the quantum well was in�nitely wide. In the triple and �ve-barrier cases it would thus seem
like the presence of additional barriers results in additional bound eigenstates in the well.

Comparing these calculations with �g. 2 of reference [8] it is seen that the peaks are generally
shifted to lower energies. This could be explained by di�erences in the e�ective mass of electrons
used.

From the graphs it is seen that the energy of the �rst quasi bound state is around 0.1 eV.
GaAs has a fermi energy Ef ≈ 0.005eV for a doping of n = 1017cm−3 [8]. This means that
none of the mobile electrons have energies large enough to reach one of the quasi bound states,
unless the temperature is high. To increase the fermi energy a potential di�erence is imposed
across the structure. Calculations of the current under these conditions is described in the
next section.

3.3 Current Calculations under an Applied Voltage

When a potential di�erence is imposed on the barrier structure a current �ows. In this section
graphs showing the current and transmission coe�cient as a function of applied potentials are
presented. The graphs was made using the theory described in Section 2.1.2 and Section 2.2.
As brie�y stated earlier in this chapter, the integration for current calculations will have to be
carried out numerically since no analytical expression for the transmission coe�cient is obtained
when using the transfer matrix formalism. To obtain the graphs the transmission coe�cients
was calculated for energies between 0 and EF using 100000 points in the interval, this was
done for potentials between 0 and 2 V using 250 points in this interval. The temperature is
taken to 0 kelvin, which means that no states above the fermi level will be occupied, therefore
it is enough to perform the integration from 0 eV and up to the fermi energy. The calculated
currents are in arbitrary units, therefore the graphs does not give any information about the
actual current but only the current maxima and minima. In the calculations it is assumed that
the potential drops linearly over the entire structure. In reality however, the potential will not
drop uniformly over the structure due to di�erences in the layer materials.

In Figure 3.2 the tunneling probability in a double barrier structure under an applied voltage
between 0 V and 0.3 V is shown. Comparing this graph to Figure 3.1(a) the important result
that TG does not become unity when resonance occurs under applied voltage is apparent.
This is due to the asymmetry of the barriers due to the applied voltage. When a voltage is
applied the barriers no longer have the same height for an electron of energy E. This also
means that they will no longer have the same transmission coe�cient and this makes it much
harder to obtain global transmission coe�cients of 1. The di�erence in transmission coe�cient
of the two barriers can be compensated for by adjusting the width of one of the barriers. This
optimization can only be done for one particular peak though.

In Figure 3.3 the current is calculated as a function of applied voltage in a double barrier
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structure. The important feature to note in this �gure is that the current is peaked at a
certain voltage. This is where resonant tunneling appears. The region that follows is where
the negative di�erential resistance occurs, the current drops when the applied voltage increases.
The negative di�erential resistance region is where the fermi level crosses the energy of one of
the quasi-bound states in the well.

The peak-to-valley ratio is seen to be about 1000, which is very high compared to the exper-
imentally obtained values. In [7] peak-to-valley ratios of 7.6 has been obtained using triple
barrier structures, which is far less than the theoretical calculations predict. This discrepancy
is explanied by the experimental di�culties in producing RTDs and the fact that resonant
tunneling is strongly dependent on experimental parameters.

In the current plot only one resonance peak is present, but genereally the number of resonance
peaks is dependent on the width of the well region between the barriers. The spacing between
the energy levels in a quantum well is proportional to 1/w2 where w is the width of the well.
Therefore the number of peaks should increase when well width is inreased. This is shown in
Figure 3.4 where the well width is set to 100 Å. It is also apparent from the graph that the
energy of the lowest lying quasi bound state is shifted towards lower energies. This is also to
be expected because the energy levels are also proportional to 1/w2.

In Figure 3.5 the current is plotted as a function of applied voltage in triple barrier structure.
From these graphs it is seen that three peaks are present as opposed to the double barrier plot
in Figure 3.3 where only two peaks are present.
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Figure 3.1: The transmission coe�cient calculations under zero applied �eld. It is seen that
the peaks are split when more barriers are added.
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Figure 3.2: Tunneling probability under an applied voltage between 0 V and 0.3 V in a double
barrier structure. The important feature to note is that the tunneling probability does not
become unity when resonance occurs.
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Figure 3.3: The tunneling current in a double barrier structure under an applied voltage of 0 V
to 2 V. The large peak is due to resonant tunneling. The negative di�erential resistance region
is the region following the peak where the current drops as a function of applied voltage.

15



0 0.5 1 1.5 2
−86

−85

−84

−83

−82

−81

−80

−79

−78

−77

−76

Applied Voltage [V]

C
ur

re
nt

 [A
rb

itr
ar

y 
U

ni
ts

]
Current as a function of applied voltage in a double barrier structure, w=100Å

Figure 3.4: The tunneling current in a double barrier structure under an applied voltage of 0 V
to 2 V width a well width of 100 Å. It is seen that two clear peaks appear when the well width
is increased.
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Figure 3.5: The tunneling current in a triple barrier structure under an applied �eld of 0 V
to 2 V. The large peaks are due to resonant tunneling. Two regions of negative di�erential
resistance are seen.
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Chapter 4

Conclusion

The theory of tunneling using the transfer matrix formalism has been investigated. The theory
has been applied to resonant tunneling diodes and used to calculate the current through such a
device under an applied voltage. It can be concluded that tunneling through symmetric double,
triple or �ve-barrier structures can reach TG values of 1 when resonance occurs. In triple and
�ve-barrier structures the resonance peaks are split into several small peaks where the number
of small peaks is generally equal to (n−1). It can also be concluded that in asymmetric barrier
structures it will in general be much harder to obatin TG values of 1.

From the calculations it is seen that a region of negative di�erential resistance in resonant
tunneling diodes exists. The calculations predict peak-to-valley ratios of 1000 which is much
more than in experiments. This discrepancy must be ascribed to the ideal nature of the
theoretical model.
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Appendix A

Matlab Program

In this appendix the code to the piece of Matlab code responsible for calculation of global
transmission coe�cients is shown.
function Transmiss ion = rtTransmiss ion (AV, En , Prec )

AA=10^−10;
eV=1.602∗10^−19;
me=0.066∗9.109∗10^−31;
hbar=6.626∗10^−34 / (2∗pi ) ;
q=1.602∗10^−19; % elec t ron charge

Energy=En+AV∗q ; % energy of the tunne l ing e l ec t ron in eV

% th i s vector contains widths of a l l ba r r i e r s and we l l s in the system . When
% n i s odd i t i s a barr ier , when n i s even i t i s a we l l
Widths=[20.0∗AA, 50.0∗AA, 20.0∗AA, 50.00∗AA,

20.00∗AA, 50.0∗AA, 20.0∗AA, 50.00∗AA, 20.00∗AA] ;

% can only be an odd number , obvious ly , because we cannot have a
% barr ier−we l l construct without a r i g h t barr i e r .
Entr i e s =3;

% the width of the whole barr i e r /we l l construct
xmax=0;
for n=1: Ent r i e s

xmax = xmax + Widths (n ) ;
end

% the s lope of the system , po t en t i a l drop per Ångstroem ,
% th i s depends on the app l ied f i e l d
Slope = AV∗eV / xmax ;

% po t en t i a l s vector , case of no app l ied f i e l d , odd n i s barr ier , even i s a
% we l l .
Pots =[0.5∗eV , 0 .0∗eV , 0 .5∗eV , 0 .0∗eV , 0 .5∗eV , 0 .0∗eV , 0 .5∗eV , 0 .0∗eV , 0 .5∗eV ] ;
Pot0Left=AV∗q ; % Potent ia l outs ide the barr i e r /we l l construct to the l e f t
Pot0Right=0∗eV ; % Potent ia l to outs ide the barr i e r /we l l construct to the r i g h t
Pre c i s i on=Prec ; % number of square we l l s to d i v ide each barr i e r into

% moving in
kr = sqrt ( 2∗me∗( Pots (1 ) + Pot0Left − Energy ) ) / hbar ;
k l = sqrt ( 2∗me∗( Energy − Pot0Left ) )/ hbar ;
SysMat(1 ,1)=1− i ∗kr/ k l ; SysMat(1 ,2)=1+ i ∗kr/ k l ;
SysMat(2 ,1)=1+ i ∗kr/ k l ; SysMat(2 ,2)=1− i ∗kr/ k l ;
SysMat=0.5∗SysMat ;

% loop of the whole system
for n=1: Ent r i e s

xpos l = 0 ;
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for j =1:(n−1)
xpos l = xpos l + Widths ( j ) ;

end

DivW = Widths (n)/ Pr e c i s i on ; % width of a s i n g l e d i v i s i on

% Potent ia l at l e f t s ide of barr i e r d i v i s i on
pot l = Pots (n) + AV∗q − xpos l ∗Slope ;

% s ing l e barr i e r /we l l loop , t h i s loop d i v i de s a s i n g l e barr i e r into severa l
% square bar r i e r s / we l l s and mu l t i p l i e s the matrices toge ther
for l =1: P r e c i s i on

% the xposr va r i a b l e a l lows us to determine the po t en t i a l on the
% r i gh t s ide of t h i s barr i e r d i v i s i on
potr = pot l − DivW∗Slope ;

% setup the matrix of t h i s d i v i s i on . for even n i t i s a wel l , for
% odd n i t i s a barr i e r
i f ( mod(n , 2 ) == 1 ) % odd n , barr i e r

a = sqrt (2∗me∗( po t l − Energy ) )/ hbar ;
M(1 ,1 ) = exp(−a∗DivW) ; M(1 ,2 ) = 0 ;
M(2 ,1 ) = 0 ; M(2 ,2 ) = exp( a∗DivW) ;

else % even n , we l l
k = sqrt (2∗me∗( Energy − pot l ) )/ hbar ;
M(1 ,1 ) = exp(− i ∗k∗DivW) ; M(1 ,2 ) = 0 ;
M(2 ,1 ) = 0 ; M(2 ,2 ) = exp( i ∗k∗DivW) ;

end

SysMat=M∗SysMat ;

% setup matrix for cross ing the d i s con t inu i t y between two barr i e r or we l l
% d i v i s i on s . Only do t h i s when we are ins ide a barr i e r or a wel l , when
% we get out of the r i g h t s ide of i t , we have to mul t ip ly by a d i s con t inu i t y
% matrix from a we l l to a barr i e r ins tead .
i f ( l<Pre c i s i on )

i f ( mod(n , 2 ) == 1 ) % odd n , we are in a barr i e r
k1= sqrt (2∗me∗( potr − Energy ) )/ hbar ; % r i gh t
k2= sqrt (2∗me∗( po t l − Energy ) )/ hbar ; % l e f t

else % even n , we are in a we l l
k1= sqrt (2∗me∗( Energy − potr ) )/ hbar ; % r i gh t
k2= sqrt (2∗me∗( Energy − pot l ) )/ hbar ; % l e f t

end

M(1 ,1 ) = k2+k1 ; M(1 ,2 ) = k2−k1 ;
M(2 ,1 ) = k2−k1 ; M(2 ,2 ) = k2+k1 ;
SysMat = (0 . 5∗M∗SysMat )/ k2 ;

po t l = potr ;
end

end % s ing l e barr i e r /we l l loop

% check i f we are s t i l l i n s ide the system , or i f we are moving out of
% the rightmost barr i e r
i f n < Entr i e s

i f ( mod(n , 2 ) == 1 ) % barr i e r to we l l
a = sqrt ( 2∗me∗( po t l − Energy ) )/ hbar ;
k = sqrt ( 2∗me∗( Energy − Pots (n+1)))/ hbar ;
M(1 ,1 ) = 1+i ∗k/a ; M(1 ,2 ) = 1− i ∗k/a ;
M(2 ,1 ) = 1− i ∗k/a ; M(2 ,2 ) = 1+i ∗k/a ;

else % we l l to barr i e r
a = sqrt ( 2∗me∗( Pots (n+1) − Energy ) )/ hbar ;
k = sqrt ( 2∗me∗( Energy − pot l ) )/ hbar ;
M(1 ,1 ) = 1− i ∗a/k ; M(1 ,2 ) = 1+i ∗a/k ;
M(2 ,1 ) = 1+i ∗a/k ; M(2 ,2 ) = 1− i ∗a/k ;

end

SysMat = 0.5∗M∗SysMat ;
else % moving out , l a s t th ing to do

k l = sqrt ( 2∗me∗( po t l − Energy ) ) / hbar ;
kr = sqrt (2∗me∗( Energy − Pot0Right ) )/ hbar ;
M(1 ,1)=1+ i ∗kr/ k l ; M(1 ,2)=1− i ∗kr/ k l ;
M(2 ,1)=1− i ∗kr/ k l ; M(2 ,2)=1+ i ∗kr/ k l ;
SysMat=0.5∗M∗SysMat ;
Transmiss ion = 1/abs ( SysMat ( 1 , 1 ) )^2 ;

end

end % barr i e r loop
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