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Preface

This report is the product of the 4th semester project period on the nanotech-
nology education on Aalborg University, Denmark. The report is addressed
to people with an interest in alternative power sources, and with a basic
knowledge in quantum mechanics. It is typeset in LATEX2e.

The report is divided into chapters, sections and subsections. The first
chapter “Introduction” gives a basis knowledge of solar cells and introduces
the polymer solar cell. The chapter “Problem Analysis” explains the phys-
ical principles behind photovoltaic devices, and creates a baseline for the
report. “Theoretical Foundation” is the first step into calculations and ex-
planations of the behavior of the polymer solar cell.“Software - EBCalc”
describes the functionality and development of the program EBCalc. “Mate-
rials and Methods” describes the experimental part of the project. “Results”
is the presentation of the results obtained. “Discussion” and “Conclusion”
discusses and concludes on the results obtained. “Appendix”tread some
specific subject in greater details. We would like to thank:

• Kim Houtved Jensen and Barbara Samuelsen Hansen, laboratory as-
sistant at the institute of Physics and Nanotechnology at Aalborg Uni-
versity. For help and assistance during the project period.

• Frederik Christian Krebs, Senior Scientist at Risø National Labora-
tory. For an introduction to polymer solar cells, and assistance during
the project period.

• Group 4.42. for assisting in equipment setup and for good cooperation.

A Note on Notation

Matrices and vectors are written using bold font. Matrices are displayed in
uppercase characters and vectors are lowercase, unless otherwise specified
(A, v). Operators are written in normal uppercase font with a hat above
(Ĥ)
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Enclosed CD

Located on the enclosed CD are the program executable and the program
source code. The .pdf version of the report, the data obtained and the
mathematica files used for calculations are also located on the CD.
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Chapter 1

Introduction

The Sun is providing the Earth with an enormous amount of energy, approx-
imately 200’000 times the capacity of the total energy production facilities.
Only a very small amount of this energy is used. Hence the thought of de-
veloping a device that effectively and cheaply harvests the solar energy is
very attractive.

There is a line of problems connected with using the solar energy. Firstly
the averaged yearly local intensity is varying from less than 100Wm−2 to
a little more than 300Wm−2. This means that sunlight must be collected
over a very large area in order to produce an amount of electrical energy
comparable with that consumed by a city, fabric or even a house.

Secondly the energy of the sunlight cannot be directly used in any way.
Therefore, turning the radiative solar energy into a more useable energy
type is the primary objective. There exists two different approaches to this
problem but with either approach a rather large amount of the radiative
energy is lost in the conversion.

• Conversion into thermal energy.

• Conversion into electrical energy.

The solar light is converted into thermal energy when interacting with
matter. This can be used for heating water and house warming etc. The
applications are naturally limited as a very large part of our energy con-
sumption is electrical energy. [Britannica, 2006]

The silicon solar cell (SSC) has been and is the most used way to convert
solar energy into electrical energy. A short summary of the history and basic
physical principles of the silicon solar cells is presented in the following
sections.

1



1. INTRODUCTION

1.1 Silicon Solar Cells

The silicon solar cell is the traditional solar cell and has found applications
in various areas such as calculators, garden lamps, and roofmounted large
area cells etc. The SSC has so far been the best candidate for conversion of
sunlight and therefore the developement and research of solar cells has been
dominated by this.

SSCs trace their history back to the 1950s where the first SSC was re-
ported by Chapin, Fuller and Pearson. It had a power conversion efficiency
of 6%. The price per watt was very high, being as much as $ 200 per watt.
This meant that SSCs were not seriously considered as an everyday power
source for many decades, only in very remote places and if the costs was
made unimportant by the benefits of SSCs, e.g. satellites.[Nelson, 2003]

SSCs has benefited from the fast development in the integrated cir-
cuit industry, and this means that it is now possible to produce SSCs
with efficiencies as high as 25%, and at a much lower cost than previously
[Shah et al., 1999]. The prices for solar cell power today lies between $ 10
and 12 W−1, based on todays prices on the internet.[Elektronikbutikken, 2006]

1.2 Introduction to the Physics of Solar Cells

Silicon solar cells are based on the physical principles described by Planck’s
law. This law states that the energy of a single photon is equal to hν, where
h is Planck’s constant and ν is the frequency of the light. The energy is thus
proportional to the frequency and inversely proportional to the wavelength.

When light, with a frequency corresponding to an energy larger than the
band gap, hits a semiconductor like silicon some of the electrons are excited
into higher energy levels. Only if the energy of the photons are larger than
the band gap, the electron can be excited. If the energy is much larger than
the band gap the electron can be ejected from the material. This is known
as the photoelectric effect. In these excited states the electrons are more
free to move, and can thus lead a current if a potential difference is imposed
across the cell. This potential difference arises from a built in asymmetry in
the cell.

SSCs are built from several different layers, two of them being n-type
silicon (negative - excess of electrons) and p-type silicon (positive - excess
of holes). Naturally found silicon has 14 electrons, 4 of them being valence
electrons. In the solid state silicon forms covalent bonds with four neighbor-
ing silicon atoms, and this forms the crystal lattice. To create n-type and
p-type silicon, impurities are introduced into the crystal lattice. This con-
trolled and on purpose contamination of silicon is known as doping. N-type
silicon can be created by doping with phosphorus.

2



1.2. INTRODUCTION TO THE PHYSICS OF SOLAR CELLS

Phosphorus is incorporated into the crystal lattice where it occupies a
lattice point which would otherwise be occupied by a silicon atom. Because
phosphorus contains five valence electrons, and only four of them are used
for bonding, there is one excess electron per unit cell. Similarly, to create
p-type silicon, atoms with three valence electrons, for example boron, are
incorporated into the lattice producing an excess amount of holes. A more
detailed description of doping can be found in Appendix A.

When p-type and n-type silicon are brought together a p/n junction
is formed at the interface. Because of the excess of electrons on one side,
and the excess of holes on the other side electrons and holes recombine at
the junction, creating an insulating junction which is termed the depletion
zone. When electrons flow from the n-type side towards the junction, excess
positive charge is left behind. Similarly, excess negative charge is left behind
when holes flow to the junction. This excess charge is not free to move
because it is part of the chemical bonds between atoms. As a result an
electric field directed from the n-type side to the p-type side is established.
This is illustrated in Figure 1.1. A more extended description of this pn
junction can be found in Appendix B

Figure 1.1: Illustration of the depletion layer. When the p-type and n-type layer
are brought together, electrons from the n-type side recombine with holes from the
p-type side at the depletion layer. The depletion layer is therefore an insulating
layer because there are no free charge carriers

A basic SSC unit produces a photovoltage of between 0.5 and 1.0 volt
and a photocurrent of some tens of milliamps per cm2 when illuminated
by the sun. This voltage is too small for most applications and therefore
multiple cells are connected in series into modules. [Nelson, 2003]

Although the manufacturing costs of SSCs have dropped dramatically
since the first cells was produced in the 1950’s, the costs are still too high for
large scale energy production. Furthermore, the production is not an easy
task, the SSCs are not very flexible and silicon is in great demand due to
the ever growing computer industry. This is not subject to change, therefore
different paths must be examined.

3



1. INTRODUCTION

1.3 Polymer Solar Cells

Polymer solar cells (PSC) is one of the possible replacements. These solar
cells add some very interesting properties to the solar cell as well as reduc-
ing the price considerably. [Krebs et al., 2004] have demonstrated that the
production of large area PSC (1m2) can be done at a cost 100 times lower
than that of monocrystalline silicon solar cells in terms of material cost.

Another area where the PSC has advantages over silicon cells is in flexi-
bility. Whereas silicon crystal is rigid a polymer layer is very flexible yielding
the possibility of a very flexible thin film solar cell. This is a property that
can enable a variety of new applications, solar cell coated clothes has been
demonstrated on Risø [Krebs, 2006].

However there are still challenges to overcome. Firstly the service life
of a PSC is very short, only a few hours for a simple metal/polymer/metal
solar cell. Secondly the efficiency of the PSC is not high compared to the
SSCs. PSCs has power conversion efficiencies around 3% using different
optimization methods.[Spanggaard and Krebs, 2004]

This leads us to our initiating problem:

• How can polymer cells be produced and characterized.

4



Chapter 2

Problem Analysis

Before a polymer solar cell can be produced and before its ability to convert
solar energy into electricity can be analyzed, is it crucial to get an insight
into how a polymer solar cell is constructed and how it functions. The
purpose of this chapter is to describe polymer solar cells and introduce the
physical principles behind it.

This chapter starts with a brief introduction to the type of solar cell
which is treated in this report. The structure of the solar cell and the solar
spectrum are described. The problem analysis is concluded with project
limitations and project statement.

2.1 Polymer Solar Cells

During the last 30 years the polymer solar cell has developed from an inef-
ficient light-harvesting device with almost no lifetime to a device that may
be introduced to the commercial marked within a short span of years.

Today scientists are working with a lot of different types of polymer
solar cells and since it will be too comprehensive to deal with all of them,
only one type will be treated in this report. The type of solar cell which
will be treated is a polymer/fullerene bulk heterojunction solar cell, and a
schematic illustration of it can be seen in Figure 2.1.

This type of polymer solar cell consist of five layers: Glass, ITO, PE-
DOT:PSS, active layer, calcium and aluminum.

The glass serves as a supporting layer for the solar cell and the only
demand glass has to fulfill is that it does not absorb light in the visible area,
since the solar cell uses this light to generate power. Other and more flexible
types of supporting layers, like transparent polymers, can also be used. The
focus of this report will not lie on the supporting layer and therefore the use
of other types of supporting layers will not be discussed any further.

5



2. PROBLEM ANALYSIS

Figure 2.1: The structure of a polymer solar cell

ITO (indium tin oxide) and aluminum serves as the electrodes in the
solar cell. Beyond that, the ITO and aluminium are also used to generate a
built-in electric field caused by the difference in the metals’ work functions.
This electric field is used dissociate the excitons, which are generated when
the active layer absorbs light, and afterwards to pull the charge carriers out
from the active layer. Like glass the ITO layer is transparent in the visible
area.

PEDOT:PSS (poly[3,4-(ethylenedioxy)-thiophene]:poly(styrene sulfonate))
and calcium are two materials which are introduced into the solar cell in
order to increase the built-in electric field and thereby improve the perfor-
mance of the solar cell.[Sigma-Aldrich, 2006]

The active layer in this polymer solar cell consists of a blend between
the conjugated polymer MEH-PPV ((poly[2-methoxy-5-(2-ethylhexyloxy)-
1,4-phenylenevinylene])) and the modified fullerene PCBM (1-(3-Methoxy-
carbonylpropyl)-1-phenyl-[6.6]C61) [American Dye Source, 2006]. MEH-PPV
is the absorbing part of the active layer and PCBM is introduced into the
layer to make the dissociation of the excitons more effective.

This section was just an introduction to the polymer solar cell which will
be analyzed more carefully throughout the rest of this report.

2.2 The Built-in Electrostatic Field

When an exciton has been generated in a polymer solar cell it has to be
dissociated into an electron and a hole and these two charges carriers have
to reach different electrodes before the device can deliver any current to an
external circuit. To achieve this, the polymer solar cell must have some kind
of built-in driving force which can accumulate the dissociations and generate
a charge transport.

This built-in driving force can be created trough spatial variations in the
electronic environment, which practically is done through junctions between
of materials with different electronic properties.[Nelson, 2003]

6



2.2. THE BUILT-IN ELECTROSTATIC FIELD

In the simplest polymer solar cell, the polymer layer is sandwiched be-
tween two metals forming a heterojunction. The two metals establish an
electric field inside the polymer caused by their asymmetrical work functions.
This electric field can be used to dissociate the generated excitons since it
pulls the electrons and holes in opposite direction.[Spanggaard and Krebs, 2004]

The work function of a metal is defined as the difference in potential
energy of an electron in the vacuum level and in the Fermi level of a metal.
The vacuum level is the energy of an electron a rest at a point infinitely
far away from the metal. The Fermi level describes the energy of the least
tightly held electron in the material.[Kittel, 2005]

The shape of the valence and the conduction band, when the polymer
and the metallic electrodes are put into contact, depends on the conductance
of the polymer and on whether the polymer solar cell is assembled or not, see
Figure 2.2. Before the polymer solar cell is assembled the Fermi levels of the
two electrodes are independent of each other. When the polymer solar cell is
assembled a redistribution of the charge carriers starts. The charge carriers
continue to diffuse until the Fermi levels have aligned in the two metals and a
thermal equilibrium has been reached. The redistribution of charges lead to
an establishment of an electric field, which affects the valence and conduction
bands in the polymer. Dependent on the conductivity of the polymer two
different profiles of the bands can be created.[Archer and Hill, 2001]

Figure 2.2: Shows the energy levels in a polymer solar cell. ITO is used as the
high work function electrode and Al is used as the low work function electrode. (a)
displays the energy levels before the polymer solar cell is assembled. (b and c) shows
the energy levels after assembling. In (b) the polymer is an isolator and therefore
the electric field changes linearly through the cell. The polymer used in (c) is a
hole conducting polymer and therefor a Schottky junction will be formed between
the polymer and the low work function electrode. [Spanggaard and Krebs, 2004]

If the polymer is an isolator, it will not have any free charges carri-
ers. Therefore only charge carriers from the electrodes can diffuse. Elec-
trons from the low work function electrode diffuse to the high work function
electrode in order to align the Fermi levels and establish a thermal equi-
librium. This leaves the low work function electrode positively charged
and the high work function electrode negatively charged. This potential

7



2. PROBLEM ANALYSIS

difference between the two electrodes results in a generation of an elec-
tric field. This field changes linearly throughout the solar cell and thereby
pulling the valence and conducting band in the polymer skew, see Figure
2.2.[Archer and Hill, 2001]

This band bending does not refer to a physical bending of the valence
and conduction band. It is used to illustrate a local change in the energy of
electrons in a semiconductor caused by an applied electric field. It is pictured
in this way because the normal way to visualize the electron energy states
and Fermi level in a material is to draw bands on an energy vs. distance
plot.

When the polymer is a hole-conducting semiconductor, which is often
the case since most polymers are better hole conductors than electron con-
ductors, the shape of the valence and conduction band looks different. Due
to the hole conducting properties of the polymer, holes are free to redis-
tribute in the polymer and therefore they participate in the alignment of
the Fermi levels. At the junction between the polymer and the low work
function electrode, holes from the polymer will diffuse into the electrode in
order to lower their energy. This diffusion of holes leaves a region of nega-
tively charged acceptor atoms behind in the polymer and creates a positively
charged region in the electrode. Through this establishing of an electric field,
the valence and conduction band in the polymer close to the junction be-
tween the polymer and the low work junction electrode is bent, see Figure
2.2. If the polymer was an electron conductor, the band bending would
have occurred at the junction between the polymer and the high work func-
tion electrode. This type of junction is normally referred to as a Schottky
junction.[Archer and Hill, 2001]

The distance over which the valence and conduction band is bent is called
the depletion width and it varies in the two cases. When the polymer is an
isolator, the depletion width is as wide as the polymer layer. In a Schottky
junction the depletion width is only a few nanometers.[Spanggaard and Krebs, 2004]

2.2.1 Improvements of the Built-in Field

In the previous section it was mentioned that the built-in electric field is
created due to the difference in the work function of the two electrodes.
Therefore it is important to be aware of what types of metals that are
chosen as the electrodes.

In a simple polymer solar cell ITO (indium tin oxide) and aluminium are
often used as the high and low work function electrode, respectively. In the
literature the work function of ITO is listed to be between 4.4 and 5.14 eV.
The reason for this varying value of the work function can be addressed to
the production of the ITO layer, where changes in the production procedure
results in different work functions.[Park et al., 1996] The work function of
aluminum is listed to be 4.2 eV [CRC, 2006].

8



2.3. HETEROJUNCTION BETWEEN DONOR AND ACCEPTOR MOLECULES

To improve the establishment of the built-in field other materials can
be introduced into the polymer solar cell. PEDOT:PSS is often put in
between ITO and the active layer, because of its high work function of
5.2 eV, which also is more homogeneous compared to the work function
of an ITO layer. The PEDOT:PSS layer will also lower the risk for short
circuiting, since the PEDOT:PSS layer is smoother than the ITO layer.
Furthermore PEDOT:PSS is used as an electron barrier since PEDOT:PSS
is a hole conductor, which also gives an improvement at the high work
function electrode.[Mihailetchi et al., 2003]

At the low work function electrode calcium can be introduced in be-
tween the active layer and Al layer. The work function of calcium is 2.9
eV [CRC, 2006]. When calcium is used the aluminium layer also serves as
a protective shell, since calcium reacts strongly with the constituents of the
atmosphere.

If PEDOT:PSS and calcium is used at the high and low work function
electrode, the maximum potential difference, which can be established when
the Fermi levels align, is the difference in work function divided by an ele-
mentary charge. This gives a maximum voltage of 2.3 V, where the voltage
between ITO and aluminium can differ a lot depending on the actual work
function of the ITO layer, but a maximum voltage would be 1.33 V.

2.3 Heterojunction Between Donor and Acceptor

Molecules

Previously it has been mentioned that the built-in electric field is used to
dissociate the generated excitons into holes and electrons. Afterwards it
pulls the charges to their respective electrodes. It has been shown that the
dissociation is most effective at the two interfaces and that this dissociation
is in fact an inefficient process. Therefore improvements have to be made in
order to make polymer solar cells more efficient. [Archer and Hill, 2001]

In the early 1950’s it was reported for the first time that the dissocia-
tion of excitons is efficient at the interface between certain semiconducting
materials with different ionization energy and electron affinity. In order to
optimize the exciton dissociation, in polymer solar cells, this was tested,
with success. An illustration of the principle behind the separation can be
seen in Figure 2.3. [Archer and Hill, 2001]

In this type of polymer solar cell a heterojunction between donor mole-
cules and acceptor molecules is made. When a donor molecule is excited
by the sunlight an electron is raised from the HOMO (highest occupied
molecular orbital) to the LUMO (lowest unoccupied molecular orbital) and
it leaves a hole behind. This excited electron has two opportunities; it
can recombine with a hole under emission of a photon or it can separate

9



2. PROBLEM ANALYSIS

from the hole. When the LUMO of the acceptor molecule is lower than
the LUMO of the donor molecule, the excited electron can relax into the
LUMO of the acceptor molecule. If this happens the excited electrons will
be separated from the hole and both charges can contribute to the total
current produced by the polymer solar cell. The hole will travel in the
donor molecule and the electron in the acceptor molecule to their respective
electrodes.[Spanggaard and Krebs, 2004]

Figure 2.3: (left) Exciton dissociation at a donor-acceptor interface. (right)A poly-
mer solar cell which makes use of a heterojunction between PCBM and MEH-PPV
layers. Modified from [Spanggaard and Krebs, 2004]

When a heterojunction is made it is important to be aware that the
diffusion length of an exciton in most polymers is short, actually in the
range of 10 nm. This short diffusion length limits the thickness of the pho-
ton absorbing layer. A very thin absorbing layer however impose another
problem, because most organic semiconductors absorb light poorly when
the layer is only 10 nm thick. This means that few excitons are gener-
ated. In fact the layer should be approximately 100 nm thick in order to
absorb most of the light, but then the majority of the excitons will re-
combine before they reach the interface. This problem can be solved by a
concept called bulk heterojunction where the donor and acceptor molecule
is blended.[Spanggaard and Krebs, 2004]

In this blend there will be heterojunctions distributed throughout the
layer, which decreases the length an exciton has to travel before it enters a
junction.

The polymer solar cell treated in this report utilizes a bulk heterojunc-
tion between MEH-PPV and PCBM. MEH-PPV is the donor molecule and
PBCM is the acceptor molecule.

MEH-PPV and PBCM will be described in more details in the next
section together with ITO and PEDOT:PSS.

10



2.4. THE MATERIALS OF AN ORGANIC SOLAR CELL

2.4 The Materials of an Organic Solar Cell

In this section MEH-PPV, PEDOT:PSS, PCBM, and ITO will be described.
A figure representing the molecule or the monomer of the polymer will be
added for each material and an absorbance-curve for each of the materials
will be described.

2.4.1 MEH-PPV

MEH-PPV(Poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene])seen
in Figure 2.4 is the active material of the solar cell. It is a modification of
PPV, modified by the MEH-group, which makes it more soluble in some
liquids, among those are THF(tetrahydrofuran).

Figure 2.4: The two figures is the monomer of MEH-PPV(right) and the monomer
of PPV(left)

2.4.2 PEDOT:PSS

PEDOT:PSS(Poly(2,3-dihydrothieno-1,4-dioxin)/poly(styrenesulfonate)) seen
in Figure 2.5, is a polymer added to the solar cell to increase the electric
field strength and improve the junction at the high workfunction electrode.
PSS makes PEDOT soluble in water and dopes it.

2.4.3 PCBM

PCBM(1-(3-Methoxycarbonylpropyl)-1-phenyl-[6.6]C61) seen in Figure 2.6
is a modification of C60 The modification makes it more soluble in organic
solvents. PCBM has the function as an electron acceptor in the solar cell.

2.4.4 ITO

ITO(Indium Tin Oxide)is a transparent conductive material. It is a mixture
of indium oxide(In2O3) and tin oxide (SnO2). ITO is used as one of the
electrodes in the solar cell.
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2. PROBLEM ANALYSIS

Figure 2.5: The figure shows PEDOT:PSS, where the upper part of the figure is
PEDOT and the lower part named X is PSS where an electron from PEDOT
has been moved to PSS. The lower part named Y is the normal structure for
PSS[Sigma-Aldrich, 2006]

2.4.5 Absorbance of the Materials

In Figure 2.7 the absorbance of the different materials have been plotted. In
an optimal polymer solar cell materials will not absorb light at the same
wavelength as the active layer. This means that none of the materials
PCBM, PEDOT:PSS and ITO can absorb light at the same wavelength
as MEH-PPV. This is important because only the light absorbed by MEH-
PPV may result excitons. It is seen, that PEDOT:PSS absorbs some light
at the same wavelength as MEH-PPV. Therefore the PEDOT:PSS layer has
to be very thin in order to minimize the absorbance.

2.5 Lifetime of Polymer Solar Cells

The stability of polymer solar cells is an important factor which must be
controlled to some extent before an introduction to the commercial mar-
ket can be a reality. The typical lifetime of a simple polymer solar cell
(ITO/Polymer/Aluminum) in air and under illumination (1000Wm−2, AM1.5)
is a few hours, while the lifetime of inorganic solar cells is 25 years.[Krebs et al., 2005]

Before the lifetime can be improved it is necessary to understand why
the polymer solar cells degenerate. This section will be used to emphasize
some of the factors that influence the degeneration.

12
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Figure 2.6: The figure shows the modified C60, PCBM. The upper attachment is
the one making the molecule soluble in organic solvents[Sigma-Aldrich, 2006]

Lifetime tests carried out on different types of polymer solar cells by
[Krebs et al., 2005] show that the degeneration is not caused by a single
factor. The degeneration occurs when the solar cells are illuminated, kept
in dark, in normal atmosphere, and in vacuum.

Experiments carried out in dark and light indicate that a part of the de-
generation is photo related. Degeneration occur in both cases but it happens
faster when the device is illuminated. The speed of the degeneration even
vary with the intensity of the light and that might indicate that there exists
a link between the current density and degeneration.[Krebs et al., 2005]

Parallel test carried out in a controlled atmosphere and in vacuum have
shown that the presence of oxygen is crucial for the degeneration. In the
absence of oxygen the degeneration was reduced significantly and a further
reduction of the degeneration speed was obtained when devices were kept in
dark and vacuum. Polymer solar cells kept in dark and vacuum for 5 days
showed barely any sign of degeneration.[Krebs et al., 2005]

Studies of the concentration of oxygen through the device have shown
that oxygen from the atmosphere diffuse through the aluminum electrode
into the active layer. The accumulation of oxygen is highest at the inter-
face between the polymer and the aluminum layer and then drops through
the active layer. It was also proven that aluminum diffuses into the poly-
mer layer, where it reacts with molecular oxygen and creates an isolating
layer.[Norrman and Krebs, 2006]

It is clear that the lifetime of polymer solar cells can be improved if
an effective shielding can be made and if the diffusion of aluminum into
the polymer layer can be stopped. The shielding can be done by glass and
it has been reported that an introduction of a lithium fluoride (LiF) layer
in between the aluminum electrode and the active layer can increase the
stability of polymer solar cells.[Krebs et al., 2004]
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Figure 2.7: Shows the absorbance of ITO, PEDOT:PSS, MEH-PPV and PCBM

2.6 The Solar Spectrum

The output of a solar cell is dependent on the radiative spectrum and two
spectra used for comparison of two solar cells must match each other very
closely. Therefore a convention regarding the radiative spectrum of solar cell
testing lamps must be specified. When a solar cell is in use, the radiative
spectrum is that of the sun therefore the specified spectrum must resemble
that of the sun.

In order to determine the shape and energy of that spectrum a certain
analysis of the solar spectrum has to be done.

The sun emits radiation in the whole electromagnetic range but the
intensity is concentrated close to the visible range, 300 to 800 nm. The
radiation peaks in the green-blue area.

In Figure 2.8 two spectra of the sun can be seen. They are part of the
reference AM 1.5 spectra produced by the American Society for Testing and
Materials (ASTM) in 2003. The first spectrum is an extraterrestrial spec-
trum. The second spectrum is an AM 1.5 spectrum at specified atmospheric
conditions, see [for Testing and (ASTM), 1999].

The total energy received can be calculated by integrating the data and
is approximately 1353Wm−2 for the extraterrestrial spectrum. When enter-
ing the atmosphere of the earth a large part of this energy is absorbed and
scattered. This absorption and scattering is more evident at certain wave-
lengths matching the absorption and scattering spectra of the atmospheric
constituents. Light below 300nm is cut off by O2, ozone, and nitrogen. CO2
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and water is responsible for the notches at 900, 1100, 1400, 1900, 1800 and
2600nm. [Nelson, 2003]

Furthermore the spectrum in general is attenuated due to the length
traveled within the atmosphere of the earth. In order to describe this a new
term called airmass is introduced. The nairmass is given by the ratio between
the diameter of the atmosphere and the actual optical path, see Equation
2.1.

nairmass =
Actual optical path

Diameter of the atmosphere
= csc(γ) (2.1)

γ being the angle from the horizon to the sun. Eg. AM 1.5 corresponds to
an angle at 42◦.

The energy received at the surface of the earth is given by the integrated
AM 1.5 solar spectrum, and gives 900 Wm−2. However, for convenience, the
AM 1.5 spectrum is normalized so that the energy received is 1000 Wm−2.

In Figure 2.8 both the extraterrestrial and the airmass 1.5 solar spectrum
is displayed up to a wavelength of 2000 nm. Note that around 200 Wm−2

is received from 2000 to 4000 nm but this part is left out for clarity of the
remaining spectrum. Secondly the photon energy of this part (approx. 0.6eV
at wavelength 2000 nm) is too low to excite electrons across the bandgap
of the polymers and therefore uninteresting in the context of polymer solar
cells. [Nelson, 2003]

Figure 2.8: The two black curves are the extraterrestrial solar spectrum and the
solar spectrum at airmass 1.5. The grey curve is the radiation from a black body at
5760◦C. The data is from [for Testing and (ASTM), 1999].

When designing a lamp for testing solar cells it is very important to
maintain a close relationship with the sun. The intensities at various wave-
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lengths should match as closely as possible and the integrated energy must
be 1000 Wm−2

The extraterrestrial spectrum of the sun resembles that of a black body
with temperature given by the temperature on the surface of the sun. The
number of photons at a given energy is given by Equation 2.2 and is also
plotted in Figure 2.8.

n (ω) =
(

2
h3c2

)
E2

exp
(

E
kBT

)
− 1

(2.2)

n(ω) is the number of photons at frequency ω, kB is the Boltzmanns con-
stant, T is the surface temperature of the sun, E is the radiative photon
energy given by Planck’s equation, E = ~ω. [Nelson, 2003]

This takes no consideration of the light absorbed by different constituents
in the solar nor earthly atmosphere. However the black body radiation
spectrum is a good model for the spectrum of the sun and can simplify
various calculations.

2.7 Project Limitation

This section will be used to outline the purpose of this project. The goal for
this project can be divided into two groups: Construction of polymer solar
cells and development of a program for calculating the bandstructure and
absorbance spectrum of certain molecules.

Construction of polymer solar cells: Different types of the polymer/fullerene
heterojunction solar cells will be made and tested. In all solar cells the active
layer will be a blend between MEH-PPV and PCBM. The variations will
be at the junction between electrodes and the active layer, where different
concepts will be tried out. A description of the different types of polymer
solar cells that will be made can be found in Section 5.1. Furthermore an
ordinary silicon solar cell will be tested for comparison with the constructed
polymer solar cells.

Development of a program: The purpose with this part of the project is
to develop a program, which can be used to calculate energy levels, band
structures, and absorbance spectra for conjugated polymers and fullerenes.
This program can then be used to check if a certain polymer or fullerene
has the optical properties that make them suitable in a polymer solar cell.
The validity of the program will be tested by comparison of the calculated
data and the experimentally obtained data.
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2.8 Problem Statement

The purpose of this project was outlined in the previous section and through
the construction of solar cells and through the calculations from the program,
the following questions will be tried answered:

• How are changes at the electrodes reflected in the performance of the
solar cells?

• How accurate can the program predict the optical properties of con-
jugated polymer and fullerenes?
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Chapter 3

Theoretical Foundation

In order to increase the understanding of the physics in solar cells, various
phenomena are given a thorough investigation in this chapter. This includes
a description of the conjugated polymers in which the exciton formation
occurs, the current-voltage characteristic of a solar cell, a characterization of
the lamp used, excitons, and a tight-binding model for the electron structure
of conjugated molecules.

3.1 Conjugated Polymers

Conjugated polymers are a group of polymers, which exhibit a variety of
electronic properties. This type of polymers can have electronic conductiv-
ity ranging from insulators to conductors. Strong luminescence and strong
nonlinear optical properties have also been observed from this type of poly-
mers.

In the 1970s three scientists, Alan G. MacDiarmind, Hideki Shirakawa,
and Alan J. Heeger, discovered that certain types of conjugated polymers can
be chemically modified to conduct electricity. This discovery has opened a
new fields of chemical and physical research, and since the 1970s conjugated
polymers have attracted more and more attention form the scientific world.
Scientists are now trying to find smart ways to utilize these properties in
light-emitting diodes, displays for mobile telephones, flexible solar cells, and
other electronic devices.[Britannica.com, 2006]

Before the properties of conjugated polymers can be fully utilized it
is important to get an understanding of the structure of these polymers
and their electronic properties. Therefore an introduction to conjugated
polymers will be given in the following sections.
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3.1.1 Bonds and Orbitals

Conjugated polymers are, like other polymers, macromolecules that consist
of a long chain of repeated units called monomers. These monomers consist
mostly of carbon and hydrogen atoms, but other atoms like oxygen, sulfur,
and nitrogen can also be a part of the monomer, see Figure 3.1

Figure 3.1: illustrates some common conjugated polymers.[Boman, 1995]

The difference between conjugated polymers and other polymers lies in
the backbone of the polymers, which in the case of conjugated polymers
consist of alternating single and double covalent bonds between the carbon
atoms. The single bond consists of a σ bond and the double bond consists
of a σ bond and a π bond. The simplest conjugated polymer is trans-
polyacetylene, which is an isomer of polyacetylene, see Figure 3.1

To explain these two types of bonds it is necessary to look at the valence
electrons of carbon. Every carbon atom has four valence electrons where,
in the ground state configuration, a single carbon atom has two valence
electrons placed in the 2s orbital and two valence electrons in two different
2p orbitals.

The sigma bonds are formed by two overlapping sp2 orbitals, where the
sp2 orbital is a hybridization between one electron from the 2s orbital and
the two electrons from the 2p orbitals. This hybridization form three in
plane orbitals at angles of 120 degrees. Two of the orbitals form bonds with
neighboring carbon atoms and the third one is forming a bond, away from
the backbone, with a hydrogen or another atom.
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3.1. CONJUGATED POLYMERS

The fourth valence electron is placed in a 2p orbital perpendicular to the
plane spanned by the three other orbitals. Each electron in the 2p orbital
along the chain interacts with a neighboring 2p electron and forms a π bond.
The two electrons in a π bond occupy the space above and below the σ bond,
as illustrated in Figure 3.2. [Boman, 1995]

Figure 3.2: illustrates the σ and the π bonds between two carbon
atoms.[Zumdahl, 2003]

3.1.2 Band Structure of Conjugated Polymers

When determining the band structure of conjugated polymers, the polymers
can be divided into two classes. The first class consist of polymers that
posses a degenerate ground state and the second class is polymers with a
non-degenerate ground state.

Trans-polyacetylene is the simplest conjugated polymer and belongs to
the class of polymers with a degenerate ground state. The monomer of
trans-polyacetylene consists only of one carbon and one hydrogen atom, see
Figure 3.1 Because of the simplicity, this polymer will be used to discuss the
degenerate ground state.

If the carbon atoms in the chain were equally spaced, the system of
2p-orbitals would create a half-filled π bond. This half-filled π band will
result in a metallic state of the polymer as shown in Figure 3.3. However
in trans-polyacetylene the chain has success with the creation of conjugated
bonds i.e. altering strong and weak bonds, see Figure 3.3. These creations
of altering bonds result in a non-equal spacing of the carbon atoms, where
the double bonds have a length of 1.36 Å and the single bonds have a
length of 1.44 Å. This change in the lattice is a consequence of a Peierls
distortion, which describes a spontaneous lowering of the symmetry of the
lattice in order to minimize the ground state energy. The displacement of
every second atom reduces the translation symmetry and halves the first
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Figure 3.3: (Left) The band structure of a carbon chain with equally spaced atoms.
(Right) The band structure of a carbon chain with altering single and double
bonds.[Boman, 1995]

Brillouin zone. After the periodic distortion two new π bands are formed:
one filled (π) and one empty (π∗). The two bands repel each other and opens
up a band gap at the Brillouin zone boundary. This band gap is caused by
the altering single and double bonds, which leads to a periodic perturbation
of the potential.[Boman, 1995]

Figure 3.4: The two ground state configurations of trans-polyacethylene.

The band gap in trans-polyacetylene is about 1.8 eV at the Brillouin zone
boundary. As it can be seen in Figure 3.4, can trans-polyacetylene have two
ground state configurations, phase A and phase B. Phase B can be obtained
from phase A by the exchange of the single and double bonds. Since all the
carbon atoms are equivalent if the chain is infinite, the energies of the two
phases are equal i.e. the ground state of the polymer is degenerated.

An example of a conjugated polymer with a non-degenerate ground state
is polythiophene where the monomer is a thiophene. Two connected thio-
phene rings are illustrated in Figure 3.5. As it can be seen from the figure
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the ring has two non-equivalent carbon sites. Cα connects the thiophene
ring to a neighboring ring in the chain and Cβ forms a bond to a hydro-
gen side group. The hydrogen atoms on neighboring rings repel each other,
which leads to a rotation of the rings around the chain axis.

In the ground state configuration of polythiophene the neighboring Cα

and Cβ atoms are connected with a double bond. The Cα-Cα and the Cβ-Cβ

are both connected with single bonds. Since the Cα and the Cβ are non-
equivalent an exchange of the double and single bonds along the chain will
lead to state of another energy. This means the ground state of the polymer
is non-degenerate.

The minimum band gap between the highest valence band and the lowest
conduction band is approximately 2.0 eV.[Boman, 1995]

Figure 3.5: illustrates two connected thiophene rings. In the left ring is the two
non-equivalent carbon sites marked with Cα and Cβ.

In general the band gap of conjugated polymers lies between 1.5 and 4 eV,
but the size of these band gabs can be modified chemically.[Carlberg, 1996]

3.1.3 Polarons and Bipolarons

A polaron can be formed when an electron is removed (or injected) from
the neutral chain, by chemical doping. This introduced charge polarizes
the surrounding chain and creates a local deformation of the lattice. The
charge and the surrounding deformation are in quantum mechanics referred
to as a polaron. This local deformation of the chain results in a lowering of
a conducting state and a raise of a valence state and thereby moving two
electronic states into the band gap.[Boman, 1995]

Depending on the type and level of doping different polarons can be
created. A hole polaron is created when the polymer is p-doped i.e. an
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electron has been removed form the chain. In the absence of an electron
the lower level only contain one electron and the upper level is empty, see
Figure 3.6. An electron polaron is formed when the polymer is n-doped i.e.
an electron has been introduced into the chain. In the presence of an extra
electron the lower level is filled with two electrons and the upper level has
gained an electron.[Boman, 1995]

At high doping level of the polymer two polarons can recombine and
form a double charged bipolaron. In a hole bipolaron the absence of two
electrons result in an empty upper and lower level. The electron bipolaron
has gained two electrons from the doping process and therefore both levels
are filled with two electrons, see Figure 3.6.[Boman, 1995]

Figure 3.6: Schematic illustration of an electron polaron and bipolaron to the left
and a hole polarons and bipolaron to the right.

Doping of the polymer is not the only way to create polarons. When an
exciton, caused by the absorption of a photon, is dissociated into a hole and
an electron two differently charged polarons are formed.[Carlberg, 1996]

3.2 Characterizing a Solar Cell

In order to characterize a solar cell a few terms must be established. These
are given below and will be discussed in the following sections.

Voc The open circuit voltage.
Isc The short circuit current.
FF The ratio between the product of the maximum current

and voltage and the Voc and Isc
η The efficiency of the solar cell.
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3.2.1 Current Generated in a Solar Cell

An illuminated solar cell can take the place of a battery or a current gener-
ator in a simple electric circuit.

When there is no load present the current drawn through the circuit is
the short circuit current, Isc. When a load is present the current will be
between 0 and Isc, and the value is determined by the IV characteristic.
The short circuit current is given by Equation 3.1.

Isc =
∫
QE(E)n(ω)dE (3.1)

n(ω) is the solar flux of photons with energy E = ~ω and QE(E) is the
quantum efficiency. QE(E) is a material constant and is defined as the
probability for an incident photon to generate an electron at the external
circuit. Generally, QE(E) depends on the parameters of the solar cell,
that is, the absorption coefficient, the efficiency of charge separation and
the efficiency of charge collection etc. It does not depend on the incident
spectrum though.[Nelson, 2003]

3.2.2 Dark Current

A diode admits much larger current when a voltage is applied in one direc-
tion, forward bias, than in the other, reverse bias. A solar cell is acting as
a diode under bias, and the current generated by this bias is called dark
current. The current will flow in the opposite direction of the photocurrent
canceling the net current.

The potential difference can be a result of an applied bias but potential
difference will also build when the solar cell is connected in an electrical
circuit with a load.

Idark(V ) = I0(exp
qV

kBT
− 1) (3.2)

I0 is a constant for the given solar cell, V is the applied voltage, T is the
temperature, q is the elementary charge, and kB is Boltzmann’s constant.

The overall current of the solar cell as a function of the applied voltage
is called the current voltage characteristic and can be approximated as the
sum of the short circuit and dark current. This is only valid for an ideal
diode and is given by Equation 3.3.

I(V ) = Isc − Idark(V ) = Isc − I0(exp
qV

kBT
− 1) (3.3)

At some voltage the dark current will negate the photocurrent and the
net current will be zero. This voltage is called the open circuit voltage Voc.
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Figure 3.7: A simulated IV characteristic. The IV curve in dark and in light is
shown along with the power as a function of the applied voltage. The point of
maximum power is indicated along with Isc and Voc

From Equation 3.3 the open circuit voltage can be derived and is given in
Equation 3.4.

Voc =
kBT

q
log(

Isc
I0

+ 1) (3.4)

In an electric circuit the solar cell is equivalent to a parallel connected
current generator with a diode. This is displayed in Figure 3.8. When
a voltage is applied the current will be divided between the load and the
diode. As the voltage increases the diode will allow more current to pass
yielding a maximum level of voltage. In Figure 3.7 an IV curve is displayed.
[Nelson, 2003]

3.2.3 Efficiency

The power generated by a solar cell at a given voltage is given by Equation
3.5.

P = IV (3.5)

Note that the solar cell can operate at a voltage only between 0 and Voc.
The power will increase with increasing voltage until a maximum is reached
at Vm and Im and then drop to zero at Voc. This is described by the fill
factor, FF , which is defined in Equation 3.6

FF =
VmIm
VocIsc

(3.6)

The FF is a measure of how much voltage relative to Voc the cell can
deliver without a significant loss of current.[Nelson, 2003]
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Figure 3.8: An electrical circuit equivalent with a solar cell using a current generator
including the parasitic resistances simulating the power loss at the contacts and from
leakage current. The series connected resistance, Rs, is simulating a resistance
in the electrode-polymer interface. The shunt resistance Rsh simulates a leakage
around the polymer layer between the two electrodes. Furthermore the point P and
a voltage circuit are emphasized as they are basis for the calculation of the current
generated by the solar cell.

For an applied voltage above Voc the solar cell consumes power, and with
increasing voltage some solar cells may start function as a diode and emit
light.

3.2.4 Parasitic Resistance

In practice power will flow through leakage currents around the cell and be
lost in the contacts. These flaws can be simulated with two parasitic resis-
tances. To describe the power lost in leakage currents running around the
polymer layer between the contacts, a parallel connected or shunt resistance,
Rsh is introduced. For power lost in resistance at the interface between the
electrodes and within the electrodes, a series resistance Rs is introduced.
See Figure 3.8.

In order to describe the current generated at a given applied voltage it
is necessary to calculate the currents and voltages in the circuits. This can
be described with V = IR and Kirchoffs laws. The current is evaluated at
a point P and the voltage drop around the marked circuit and the circuit
with the diode and applied voltage is used to set up the equations of 3.7.
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Figure 3.9: Here the effect from the parasitic resistances are shown. The black
curve is in both graphs displayed for Rs = 0 and Rsh = ∞. To the left the effect of
a series resitance is shown with increasing series resistance. To the right the effect
of a decreasing shunt resistance is shown.

Isc − Id = IRsh
+ IRs (3.7)

V + VRs = VRsh
(3.8)

V + VRs = Vd (3.9)

From combining the equations of 3.7 an expression for the current as a
function of the applied voltage can be achieved. It is given in Equation 3.10.

I(V ) =
(Isc − I0(exp ( q(V−I(V )Rs)

kBT )− 1))Rsh − V

Rs +Rsh
(3.10)

The effect of the parasitic resistances on the IV characteristic is shown
in Figure 3.9. It is evident that these simulated flaws will yield a decrease
in the fillfactor and thereby the efficiency of the solar cell.[Nelson, 2003]

3.2.5 Effect of Bandgap on Efficiency

An important value when comparing solar cells is the efficiency - the ratio
between the incoming radiative energy and the output of electric energy.
However there is a theoretical limit to this ratio.

The calculations of this section will be under the approximation that
there is no recombination, there can not be multiple excitons per photon
and every photon with energy E > Eg generates an electron to the external
circuit. Furthermore the results is only valid for a radiation source with a
spectrum similar to that of a black body at temperature 5760 K as different
spectra will effect both the maximum efficiency and the optimal size of
bandgap.

The only part of the spectrum usable is those photons with sufficient
energy to excite across the bandgap of the solar cell. However, an electron
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Figure 3.10: The optimal efficiency as a function of the bandgap. The optimal
bandgap is calculated to be at 1.06 eV with an efficiency at 44%.

with excess energy after excitation will go trough a radiative-free transition
to the lowest state of the conducting band. Therefore the ratio is dependent
of the bandgap, and the optimal bandgap is determined by the equilibrium
between a high energy per photon contra a high amount of exciting photons.

Using the black body radiation model of the sun, the efficiency as a
function of the band gap is given by Equation 3.11.

Φ(Eg) =
Eg

∫∞
Eg
n(ω)dω∫∞

0 n(ω)~ωdω
(3.11)

Φ being the theoretical utilization ratio and Eg is the energy of the bandgap
and n(ω) is the black body photon flux at energy ~ω.

The utilization ratio as a function of the energy of the bandgap is plotted
in Figure 3.10.

The optimal bandgap can be found by solving Equation 3.12. For the
black body spectrum used for this analysis the optimal bandgap gives 1.06
eV yielding an efficiency at 44%.

dΦ
dEg

= 0 (3.12)

3.3 The Spectrum of the Lamp

In Section 2.6 the spectrum of the sun was described. As already mentioned
the solar cells must be designed for working with sunlight, light with the
spectral characteristic and intensity as that from the sun. It is however for
practical reasons standart to use a lamp radiating 1000Wm−2.
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Figure 3.11: The spectrum of the lamp (the black curve) compared with the spectrum
of the sun(grey curve). Note that the spectra are normalized with regard to the
integrated energy for better comparison.

In Figure 3.11 the spectrum of the lamp used for measuring IV charac-
teristics is shown along with the AM1.5 spectrum of the sun for comparison.
Note that the spectra are normalized so that the integrated energy output
is equal.

As clarified in Section 3.2.5 it is only photons with an energy higher than
the bandgap that are of use. Therefore the integrated energy from Eg to
infinity for a given lamp should be equal to that of the sun in order for the
lamp and the sun to result in a similar exciton generation.

It is evident from Figure 3.11 that the solar spectrum is much wider,
peaking blueshifted compared to the lamp. Furthermore the light intensity
from the lamp is centered around 500nm. The differences in spectrum must
be taken into consideration when comparing efficiency of different bandgap
solar cells.

The bandgap of a silicon solar cell is approximately 1.4 eV corresponding
to a wavelength at around 850nm. The bandgap of a polymer solar cell
is generally higher, and using MEH-PPV as the active layer the bandgap
is around 2.14 eV corresponding to 580 nm [Chambers and Selmic, 2005].
Consequently the ratio between the energy the silicon solar cell and the
MEH-PPV solar cell will be able to utilize is a relatively larger using the
lamp than the sun.

The quality of the lamp is sufficient for the measurements conducted in
this project. However a different lamp should be used in order to increase
the validity of the IV characteristics and efficiency measurement.
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3.4 Generation and Dissociation of Excitons

This section describes the principles behind generation and separation of
photo generated excitons in crystals. The principles described here applies
to the excitons generated in polymer solar cells as well. Excitons are the
basic for the photocurrent, and they are the key parameter to efficient solar
energy conversion. Therefore, a good understanding of the nature of excitons
is needed in order to make efficient solar cells.

3.4.1 Excitons in Crystals

When a crystal is illuminated with photons ~ω > Eg electrons are excited to
higher energy levels by absorbance of a photon. An excited electron leaves
behind an empty space, and this empty space is termed a hole. The hole acts
as if it was a positively charged electron, it can move through the crystal
and it is affected by coulomb forces. Therefore, a coulomb potential exists
between the excited electron and the positively charged hole. This potential
acts to bind the pair together, so that they cannot be easily separated. The
electron hole pair is called an exciton. An exciton is similar to a hydrogen
atom, the hole being the positively charged core.[Kittel, 2005]

Generally, when a photon of energy ~ω > Eg is absorbed in a crystal
an electron is excited to a higher energy level. This means that the crystal
only absorbs the photon frequencies corresponding to an energy equal to or
higher than the band gap. But some materials absorb photons with energies
lower than the band gap. This is the case with solid krypton, which has a
band gap of 11.7 eV but shows an absorbtion peak at 10.17 eV. This is due
to the generation of excitons. The energy levels of excitons generally lies
below the band gap, allowing for absorbtion of photons with lower energy.
[Kittel, 2005]

An exciton can move in a crystal and transport energy because the
electron-hole pair carries momentum and thus, kinetic energy. The exci-
ton cannot, however, carry a current because it is electrically neutral. For a
photovoltaic cell to work, free charge carriers have to be present. Since the
electrons in a semiconductor are too tightly bound to contribute to the cur-
rent, only the excited electron and the hole can make a contribution. This
implies that the electron has to be separated from the hole.[Kittel, 2005]

3.4.2 Dissociation of Excitons

As noted in the last section, it is necessary to separate the bound electron
hole pair to create free charge carriers. This separation can be achieved by
applying an electric field across the exciton. This will pull the electron and
the hole in opposite directions and thus enable transport of charge. The
electron hole transport process is illustrated in Figure 3.12.
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Figure 3.12: An illustration of the excitation of an electron to a higher energy level,
and the separation of the pair by an electric field.

One of the most important factors in making good solar cells, is efficient
dissociation of excitons. Even if all incident light is absorbed in the cell, it
contributes nothing to the performance of the cell if the dissociation process
is inefficient. The effectiveness of dissociation is dependent on the strength of
the applied electric field. The stronger the field, the faster the electron hole
pair is pulled from each other, decreasing recombination frequency. Types
of electron hole recombination events include radiative recombination and
Auger recombination. Radiative recombination happens when an electron
undergoes spontaneous emission, crosses the band gap and emits a photon
with frequency ω = Eg/~.

3.4.3 Calculation of Exciton Binding Energy

The effectiveness of charge separation depends on the binding energy of the
excitons. An approximated calculation of the binding energy of excitons in
PPV is given in this section. The exciton binding energy can be calculated
by considering the Rydberg energy. The Rydberg energy is derived for an
hydrogen atom, but since an exciton is comparable to a hydrogen atom,
the Rydberg energy can be applied to excitons as well. The energy of the
electron in the hydrogen atom is dependant on the coulomb interaction and
the kinetic energy of the electron.

E =
1
2
mev

2 − 1
4πε0

e2

r
(3.13)

Where r is the radius of orbit. By considering the forces acting on the
electron an expression for the speed of the electron can be obtained. The
electron is subject to the coulomb force and to an acceleration due to the
circular orbit. From Newtons 2nd law an expression for the velocity can be
derived.
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mev
2

r
=

1
4πε0

e2

r2
(3.14)

Thus we find:

v2 =
1

4πε0
e2

mer
(3.15)

Inserting this result in Equation 3.13 gives the following expression for the
energy:

E =
1

8πε0
e2

r
− 1

4πε0
e2

r
(3.16)

Gathering the terms we obtain an expression for the energy of the electron:

ER =
−1

8πε0
e2

r
(3.17)

This expression is called the Rydberg energy. In the case where r is equal
to a0, the Bohr radius, ER equals −13.6eV which is the ionization energy
for the hydrogen atom. In the case of excitons, r is not equal to the Bohr
radius but is calculated from Equation 3.18. Furthermore, the permittivity
is not the vacuum permittivity ε0 but the permittivity of the material in
which the excitons are generated.

r =
4πε0εr~2

e2µ
(3.18)

Here εr is the relative permittivity of MEH-PPV and µ is the reduced mass.
The permittivity ε0εr is used to account for the screening of the coulomb
potential by attracted electrons and holes. This permittivity should also be
used when calculating the Rydberg energy of the exciton. It should be noted
that the permittivity used is the macroscopic permittivity. This means that
the approximation is only valid when the radius of the exciton is large in
comparison to the lattice constant.

The reduced mass which is used in the calculation of the exciton binding
radius can be calculated from Equation 3.19.

µ =
m∗

em
∗
h

m∗
h +m∗

e

(3.19)
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Where ∗ means effective mass. The effective mass can be described as
follows. When an electron is inside a material, it experiences interactions
with the material. This means that the acceleration due to a force F is
not determined solely by the electron mass me but also by the interactions
from the material. These interactions can be included in the mass so that
F = m∗

e
dv
dt , where m∗ is the effective mass and dv

dt is the acceleration of the
electron in the material due to the force F . An expression for the effective
mass can be derived using the definition of force and acceleration, and the
group velocity for the electron wave packet.

F =
dp

dt
= ~

dk

dt
(3.20)

a =
dv

dt
=
dv

dk

dk

dt
(3.21)

Inserting in Newton’s second law

~
dk

dt
= m∗ dv

dk

dk

dt
(3.22)

Using the group velocity vg = dω
dk and ω~ = E we get:

m∗ = ~2

(
d2E

dk2

)−1

(3.23)

This expression shows that the effective mass is inversely proportional
to the curvature of the band structure. If the band structure is known the
exciton binding energy can be calculated using first Equation 3.23 to find
the effective mass for electrons and for holes, and then using Equation 3.17
to calculate the binding energy.

3.4.4 Determination of Dissociation Efficiency

The efficiency of dissociation is in general dependant on the electric field
applied to across the exciton. The stronger the field, the faster the electron-
hole pair will be pulled apart, and the less time is available for recombination.
The recombination event is relatively slow, in the order of µs [Nelson, 2003]
. Dissociation efficiency is as noted earlier also dependant on the exciton
binding energy, this energy was calculated in the previous section.

The exciton is held together by the energy from the attractive coulomb
force, this energy should be overcome by the energy put into the exciton by
the field. The energy due to the coulomb attraction is given by Ec = −1

4πε0εr

e2

r
and the energy due to the electric field is given by Equation 3.24.
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EE = −eExh + eExe (3.24)

Here E is the field strength, xe is the electron position and xh is the hole
position. This calculation can be intuitively understood by considering the
potential energy of the electron and the hole due to the field. This scenario
is illustrated in Figure 3.13.

Figure 3.13: The electron and the hole at positions xe and xh respectively. The
electric field is directed along the positive x-axis. The separation between the electron
and the hole is x.

The field works to increase the x-position of the hole and decrease the
x-position of the electron. When xh is increased or xe decreased, the poten-
tial energy of the system drops. This explains the signs in Equation 3.24.
According to Figure 3.13 x = xh−xe, using this, Equation 3.24 is rewritten
to EE = −eEx. Using this along with the potential energy of the exciton
due to the coulomb attraction gives the following expression for the energy
as a function of the electron position relative to the hole position x:

E(x) =
−1

4πε0εr
e2

|x|
− eEx (3.25)

Here the numerical value of x is used in the first term because the
coulomb potential energy is only dependant on the absolute distance be-
tween the charges. The potential energy from the field however, is strongly
dependant on the sign of the separation. Moving the electron far right and
the hole far left in Figure 3.13 would reverse the sign of the separation and
increase the potential energy. This increase would not be reflected in the
calculation if the numerical value of x was used in the last term.

If the graph of E versus x is plotted a graph similar to the one in Figure
3.14 is obtained. The graph goes to minus infinity as x→ 0 due to the term
Ec. When x becomes smaller than zero the energy rises. This corresponds to
the electron and the hole interchanging their positions and working against
the field, and this of course increases the energy.
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Figure 3.14: Graph showing the binding energy of the exciton under an applied
electric field and the potential barrier which the electron has to overcome to separate
from the hole. The tunneling probability increases when the area of the shaded area
decreases.

When x is positive the energy is first increasing due to the coulomb
attraction being stronger than the electric field force. When the separation
reaches a certain limit, the electric field force is stronger than the attraction
and separation continues because it lowers the energy.

From the graph it can be seen that the exciton has to cross an energy
barrier to dissociate. The black line in the figure represents the energy of the
exciton when it is created. This energy can be calculated from Equation 3.18
and Equation 3.17. If this energy is smaller than the barrier, the electron
(or hole) has a certain probability to tunnel through the barrier to increase
the separation. The tunneling probability is dependent on the area bounded
by the line and the curve (the shaded area in the figure). The smaller the
area, the larger the probability. When C60 is added to the solar cell the
binding energy decreases and the black line moves against zero decreasing
the area of the shaded area.

3.4.5 Tunneling Through the Barrier

As noted in the previous section the electrons has to tunnel through a po-
tential barrier to separate from the holes. The probability of tunneling
(transmission) is given by the Wentzel-Kramer-Brillouin (WKB) formula,
Equation 3.26:
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T (E) = T0Exp

{
−2

∫ xf

xi

√
2m
~2

(VB(x)− E)dx

}
(3.26)

Here VB(x) is the barrier energy as a function of the separation x, m is the
mass of the tunneling particle and T0 is the tunneling probability when the
energy is larger the barrier height.

The potential barrier over which the integration is done is shown in
Figure 3.14, and the integration limits are marked with the black line. The
position of the line on the y-axis represents the binding energy of the exciton.
When the binding energy increases the barrier width increases drastically.
Furthermore, the difference VB(x)−E gets larger because the barrier height
increases as well. The overall result is that the exponent gets larger, and
the tunneling probability decreases accordingly.

The integration limits are found by equating Equation 3.25 to the binding
energy and finding the intersections. Because we are interested only in the
points of intersection for which x is positive, |x| = x and the equation can be
rewritten to a second degree polynomial. The lower root of this polynomial
is xi and the higher root is xf .

The tunneling probability as a function of the binding energy can be
seen in Figure 3.15. The relative permittivity of MEH-PPV used is εr = 3.0
[Yang et al., 2000]. The exciton binding energy in PPV has been measured
to 0.35 eV [Alvarado et al., 1998], this gives a probability for exciton dissoci-
ation of about 0.75. In Figure 3.16 and Figure 3.17 the tunneling probability
as a function of applied field is shown. The binding energy was set to 0.35
eV.

In Figure 3.15 it is seen that the tunneling probability increases as the
binding energy decreases. This is expected because the height of the barrier
decreases. It can be seen that the probability eventually reaches unity,
this happens when the binding energy becomes equal to the height of the
potential barrier. In Figure 3.17 the tunneling probability as a function
of field strength is plotted. Again, the probability increases as the field
strength increases as expected.

3.5 Tight Binding Approximation

In this project the tight binding (TB) method is utilized to calculate the
energy eigenvalues and band structure of the polymers and of C60. TB is an
approximation which simplifies the calculations significantly. In molecules
even as simple as H2 the Hamiltonian contains as many as 8 terms, two for
the kinetic energy of the electron and the proton, and 6 for the potential en-
ergy of the electrostatic interactions between pairs of electrons and protons.
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Figure 3.15: The probability of tunneling as a function of exciton binding energy.
Higher energy (numerically) means lower probability. The field strength was set to
2.5× 107[V/cm] .

Calculating the energy levels of C60 using an exact model would be practi-
cally impossible. Therefore some approximations are made. The TB model
is based on the idea that complicated molecular wave functions, can be build
from simple atomic wave functions (linear combination of atomic orbitals,
LCAO). The molecular wave function ψ is written as a linear combination
of atomic time independent wave functions [Lewars, 2004], [Kittel, 2005]:

ψ =
N∑

i=1

n∑
α=1

ciαφiα (3.27)

The first summation runs over the number of atoms in the solid, and
the second summation runs over the number of orbitals in every atom. In
the case of planar polymers we are only considering π orbitals because the
electrons in π orbitals are the most loosely bound electrons. The summation
is therefore rewritten into:

ψ =
N∑

i=1

ciφi (3.28)

Where the φi’s are now the atomic π orbitals. This wave function is
not an exact solution to the Shrödinger equation for the system, only an
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Figure 3.16: Probability as a function of field strength, the exciton binding energy
is set to −0.35eV . This field strength is shown in the interval 0 to 4× 106

approximated solution. We want to make this approximation as good as
possible. The variational principle states that the expectation value of the
energy for a trial wavefunction, is always greater than or equal to the ground
state energy. The expectation value is calculated using:

< ψ|Ĥ|ψ >=
∫
ψ∗Ĥψd3r∫
ψ∗ψd3r

(3.29)

Now, as stated before, according to the variational principle:

∫
ψ∗Ĥψd3r∫
ψ∗ψd3r

≥ E0 (3.30)

Because it is guaranteed that the energy of the trial wave function will
always be greater than or equal to the true ground state energy, we are
free to choose the ci’s which minimizes the expectation value of the energy.
The closer the expectation value gets to the ground state energy, the more
accurate the approximation is.

For simplicity we will consider a two atom system where only two orbitals
are allowed to interact. The results obtained using this simplification can
easily be expanded to systems of larger numbers of orbitals. Using Equation
3.28 a two atomic system implies that ψ = (c1φ1 + c2φ2). Inserting this in
Equation 3.30, assuming that the wave-function is entirely real , gives:
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Figure 3.17: Probability as a function of field strength, the exciton binding energy
is set to −0.35eV . This field strength is shown in the interval 0 to 6× 107

∫
(c1φ1 + c2φ2) Ĥ (c1φ1 + c2φ2) d3r∫

(c1φ1 + c2φ2)
2 ≥ E0 (3.31)

Now, looking only at the nominator and expanding the parentheses:

c21

∫
φ1Ĥφ1d

3r + c1c2

∫
φ1Ĥφ2d

3r + c1c2

∫
φ2Ĥφ1d

3r + c22

∫
φ2Ĥφ2d

3r

(3.32)

The first of these integrals is called the coulomb integral (only the inte-
gral, not the constants cx). It is a measure of the energy of an electron in
atomic orbital one. This integral is from now on denoted as αi. The two
middle integrals are called resonance integrals. They are a measure of the
strength of bonding as a result of overlap of atomic orbital one and two,
they are denoted as βij . The last integral is equivalent to the first one. Now
looking at the denominator of Equation 3.31:

c21

∫
φ2

1d
3r + c1c2

∫
φ1φ2d

3r + c1c2

∫
φ1φ2d

3r + c22

∫
φ2

2d
3r (3.33)

The first and the last integrals are equal to 1 because the wave function is
normalized, and integration is done over all space. The two middle integrals
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are termed overlap integrals, and they are a measure of the efficiency of the
overlapping of the wave functions. The overlap integral is denoted as Sij .

The physical significance of the integrals α, β and S can be explained as
follows. αi is the energy of the molecule relative to zero, where zero energy
is defined as the energy of the molecule when the electron is at an infinite
distance from the orbital. Because the energy of the molecule decreases as
the electron falls into the orbital, αi is a negative value. The negative of
αi is equal to the ionization energy, it is the energy needed to remove an
electron from the orbital to a point infinitely far away.

βij is a measure of the strength of the bond between overlapping orbitals.
It can be viewed as the energy of an electron in the overlap region of the
orbitals. βij is a negative value.

The Sij integral is a measure of the efficiency of overlap of atomic or-
bitals. It is less than one between different atomic orbitals on the same
atom, and between separated atomic orbitals. Between identical orbitals on
the same atom S = 1 because the wave function is normalized. When two
atoms are far separated from each other the overlap integral is effectively
equal to zero. Figure 3.18 illustrates the overlapping wave functions.

Figure 3.18: An illustration of the overlap of wave functions. The overlap integral
has a significant value only in the region between neighboring atoms, because the
product of the wavefunction is close to zero elsewhere.

Introducing α, β and S in Equation 3.32 and Equation 3.33 we get the
following:

E =
c21α1 + c22α2 + 2c1c2β12

c21S11 + c22S22 + 2c1c2S12
(3.34)

Where the fact that the Hamiltonian is a hermitian operator, and βij

therefore equals βji, has been used. The next step is to minimize the energy
by choosing the ci’s which gives the smallest possible energy. This is done
by differentiating the energy function first with respect to c1 and then with
respect to c2 and setting the derivatives ∂E

∂c1
and ∂E

∂c2
equal to zero. Doing

this the following equations are obtained:
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0 = c1 (α1 − ES11) + c2 (β12 − ES12) (3.35)
0 = c1 (β21 − ES21) + c2 (α2 − ES22) (3.36)

These equations are called the secular equations. The resemblance to a
matrix problem is obvious. The indices correspond to the row and column
where they lie (αi lies at i, i). Rewriting these equations into a matrix
problem:

(
α1 − ES11 β12 − ES12

β21 − ES21 α2 − ES22

)
·
(
c1
c2

)
=

(
0
0

)
(3.37)

By noting that we are everywhere subtracting some scalar quantity times
the scalar E, this matrix problem can be rewritten into:

[H− SE] · c = 0 (3.38)

Where the H and S matrices look as follows:

H =
(
α1 β12

β21 α2

)
, S =

(
S11 S12

S21 S22

)
(3.39)

The H matrix is called the Fock matrix, and it represents the energy of
the system. These matrices are further simplified using the Hückel approx-
imation which is described in the next section.

3.5.1 The Simple Hückel Approximation

In the simple Hückel approximation, overlapping between atomic orbitals
is neglected, meaning that Sij equals zero for i 6= j. Only perfect overlap
between identical orbitals on the same atom is considered, corresponding
to Sii = 1. A matrix element can be expressed as Sij = δij , where δij is
Kronecker delta. This means that the overlap matrix S will be of the form:

S =

1 · · · 0
...

. . .
...

0 · · · 1

 (3.40)

Or in other words, the matrix S will be equal to the unit matrix I. Using
this Equation 3.41 is rewritten into:
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[H− IE] c = 0 (3.41)

The generalized eigenvalue problem Equation 3.41 has been rewritten
into the normal eigenvalue problem because S = I. Non trivial solutions to
this equation exists only when the determinant of [H− IE] is equal to zero.
Finding the values of E for which this is true, corresponds to finding the
eigenvalues of the matrix H.

In the simple Hückel approximation the matrix H is a hermitian matrix
with the diagonal elements αii’s equal to zero. αii’s different from zero will
only shift the energy values by a constant value . The βij ’s are set equal to
some constant value representing the binding energy on adjacent atoms, and
zero when the atoms are not adjacent. By doing this, interaction between
non-neighbor atoms are neglected.

3.5.2 Tight Binding for Benzene

As an example of the use of tight binding a benzene molecule will be consid-
ered. Benzene is a planer molecule with the π orbitals oriented perpendicular
to the molecule plane. A picture of benzene if shown in Figure 3.19.

Figure 3.19: A benzene molecule with numbered carbon atoms.

Building the H matrix is done by considering interactions between atoms.
As noted earlier, in the simple Hückel approximation only interactions be-
tween adjacent atoms are considered. For benzene, the H matrix is a 6x6
matrix, because there are 6 carbon atoms in benzene, and it looks as follows:

H =



0 β 0 0 0 β
β 0 β 0 0 0
0 β 0 β 0 0
0 0 β 0 β 0
0 0 0 β 0 β
β 0 0 0 β 0

 (3.42)
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The β’s at position (6, 1) and (1, 6) is due to interactions between atom
1 and 6.

3.5.3 Tight Binding for Polymers - Bloch Theorem

In polymers there are an infinite number of interactions between atoms.
This means that the matrices will be of infinite dimension. Like in a crystal,
the energy levels will split into bands when free atoms are brought together
[Kittel, 2005]. To calculate the energy bands of the polymer, the Bloch
theorem is used. According to the Bloch theorem the wavefunction can be
written as the product of a plane wave and a periodic function u(r), which
has the periodicity of the lattice [Kittel, 2005]:

ψ (r) = eik·ru (r) (3.43)

Because u(r) is periodic u(r) = u(r+T), where T is a translation vector
of the lattice. The only change in moving from one unit cell to another is
an extra factor of eika. This can be seen from Equation 3.44:

ψ (r + a) = eik·(r+a)u (r) = eik·reik·au(r) (3.44)

Because u(r + a) = u(r). The tight binding matrices used for crystals
and polymers contain interactions from neighboring unit cells as well as
interactions between atoms in the molecule. As an example of a tight binding
matrix using the Bloch theorem, we will consider polyacetylene as shown in
Figure 3.20.

Figure 3.20: Polyacetylene.

The tight binding matrix for polyacetylene is a 2× 2 matrix since there
are two atoms in the unit cell. The unit cell is marked with brackets in the
figure, and the atoms are numbered. To obtain the elements of the matrix
the definitions of α and β are used, as well as the Bloch theorem. The
interaction of orbital π2 with all π1 orbitals in the polymer is given by:

H12 =
∑

n

eikan

∫
π1(r + na)Ĥπ2(r)d3r (3.45)
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Similarly, the interaction of orbital π1 with all π2 orbitals is given by:

H21 =
∑

n

eikan

∫
π2(r + na)Ĥπ1(r)d3r (3.46)

Where the summation runs over all the unit cells in the polymer. For infinite
polymers this would mean n = [−∞,+∞], but in the Hückel approximation
only nearest neighbor interactions are considered so n = [−1, 0, 1]. The
equations are thus rewritten to:

H12 = e−ika

∫
π1(r− a)Ĥπ2(r)d3r +

∫
π1(r)Ĥπ2(r)d3r + eika

∫
π1(r + a)Ĥπ2(r)d3r

(3.47)

H21 = e−ika

∫
π2(r− a)Ĥπ1(r)d3r +

∫
π2(r)Ĥπ1(r)d3r + eika

∫
π2(r + a)Ĥπ1(r)d3r

(3.48)

In Equation 3.47 the first integral corresponds to interaction between atom
two in the marked unit cell and atom 1 in the unit cell to the left. These are
connected by a single bond. The second integral is the interaction between
atom 2 and 1 in the same unit cell, they are connected by a double bond.
The last integral is interaction between atom 2 in the marked unit cell and
atom 1 in the next unit cell to the right, but since these atoms are not nearest
neighbors, this integral equals 0. Using a similar procedure in Equation 3.48
the we get:

H12 = βD + βSe
−ika (3.49)

H21 = βD + βSe
ika (3.50)

Using Hii = α as derived earlier, the H matrix for poly acetylene is given
by:

H =
(

α βD + βSe
−ika

βD + βSe
ika α

)
(3.51)

By varying the values of k through the first Brilluoin zone and calculating
the energy eigenvalues for each k the band structure is obtained. This
procedure is explained in Chapter 4.
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Chapter 4

Software - EBCalc

This chapter describes the functionality of the program EBCalc - Energy
Band Calculator. EBCalc is a piece of software able to calculate the energy
bands of various molecules. In the context of polymer solar cells, it is used
to calculate the band structure of the polymer and C60.

EBCalc is written purely in C++ using the Windows GDI (Graphics
Device Interface) of the Win32 API. It is targeted for WindowsXP or Win-
dows2000 machines. The program makes use of a mathematics library which
has been created by this project group, and optimized in interest of reusabil-
ity. The library is implemented through a number of C++ classes. These
classes implements functionality like complex number algebra, vector and
matrix algebra, plotting of functions and drawing of coordinate systems,
numerical integration and differentiation etc.

The actual implementation of these classes will not be discussed, only
the Jacobi method is described in detail because it plays such an important
role.

The theoretical results which were calculated using the program are pre-
sented in the last section of this chapter.

4.1 Finding Eigenvalues by Jacobi Transformations

To calculate the energy levels of the polymer the equations from quantum
mechanics have to be solved. This involves solving the energy eigenvalue
problem for the system. This eigenvalue problem has the form of Equation
4.1.

Ĥψ = Eψ (4.1)

To solve this problem, we have to find the eigenvalues E which satisfies
the above equation. The equation is first rewritten into a matrix problem,
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this process is explained in Section 3.5. Equation 4.2 shows the eigenvalue
problem on matrix form.

H · c = ES · c (4.2)

Finding eigenvalues is not a trivial task, in fact it is one of the most dif-
ficult tasks in numerical computation. A routine for finding eigenvalues of
a general matrix would both be very complicated, and very slow. Therefore
eigenvalue routines are often highly specialized, utilizing certain properties
of the matrices involved. One such specialization is based on Jacobi Trans-
formations. This routine can be used when the matrices involved are equal
to the transpose of their conjugate. Such matrices are called hermitian ma-
trices. The hermitian of a matrix is denoted A† so for hermitian matrices
A† = A. The following sections describes the basics of the Jacobi algorithm.

4.1.1 What is the Jacobi Method

The aim of the Jacobi method is to create a diagonal matrix through a
series of similarity transformations. These similarity transformations are
plane rotations, designed to annihilate (set to zero) an off diagonal matrix
element on each rotation. The similarity transformations are of the form
shown in Equation 4.3.

D = VT ·A ·V (4.3)

where,

V = P1 ·P2 ·P3...

Here the Pi’s are the successive Jacobi rotation matrices, and D is the
final diagonalized matrix. Because similarity transformations do not change
the eigenvalues of a matrix, and because the eigenvalues of a diagonalized
matrix, are the diagonal elements themselves, the diagonal of the matrix D
are the eigenvalues of A.

Furthermore, because the matrix which diagonalizes A is the matrix
of the eigenvectors, the eigenvectors can be calculated by multiplying the
successive transformations.

4.1.2 The Jacobi Rotation Matrix

The Jacobi rotation matrix is of the form seen in Equation 4.4. The matrix
is termed Ppq because it is the matrix which is designed to annihilate matrix
element p, q. It has a cosine at p, p and q, q and a sine and a -sine at q, p

48



4.1. FINDING EIGENVALUES BY JACOBI TRANSFORMATIONS

and p, q respectively. In this section cosine is termed c, sine is termed s and
tangent is termed t.

Pqp =



111

· · ·
cpp · · · spq
... 1

...
−sqp · · · cqq

· · ·
1nn


(4.4)

In one Jacobi iteration p and q are varied so as to annihilate every element
of the matrix. Because successive transformations in the same iteration undo
previously set zeros, more than one iteration is needed, but the convergence
of the transformations guarantee that the result will eventually be a diagonal
matrix. A Jacobi transformation is shown in Equation 4.5

A′ = PT
pq ·A ·Ppq (4.5)

Here the matrix A′ is the matrix obtained from a single transformation.
Multiplying out Equation 4.5 and utilizing the symmetry of the matrix, the
equations Equation 4.6 - Equation 4.10 are obtained.

a′rp = carp − sarq (4.6)

a′rq = carq + sarp (4.7)

a′pp = c2app + s2aqq − 2scapq (4.8)

a′qq = s2app + c2aqq + 2scapq (4.9)

a′pq =
(
c2 − s2

)
apq + sc (app − aqq) (4.10)

Here the lower case a’s denote an element of the matrix A and the subscripts
denote the position of the element. a′rp and a′rq are the elements in column
r and q excluding the elements at the diagonal and the elements at q, p and
p, q so r 6= q and r 6= p. Because the goal of the Jacobi transformation is to
set off diagonal elements equal to zero, a′pq is set equal to zero and Equation
4.10 is rewritten into:

(
c2 − s2

)
apq = −sc (app − aqq) (4.11)

Gathering cosine and sine terms on one side, and a terms on the other, the
following equation is obtained:

c2 − s2

sc
=
aqq − app

apq
(4.12)
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Using the identity cot 2φ = cos2 − sin2

2 cos sin :

cot 2φ =
c2 − s2

2sc
=
aqq − app

2apq
(4.13)

Where φ is the rotation angle which annihilates element pq and qp. Using
this formula it is possible to calculate the actual numerical value of the angle,
and insert this value into the cosines and sines of the Jacobi rotation ma-
trix. This however, would involve evaluating firstly an inverse trigonometric
function, arccotφ and secondly the sines and cosines of the angle. This
is computationally expensive, and susceptive to accuracy errors. Therefore
the sines and cosines of the angle are computed, and not the angle itself.
[Press et al., 2002]

4.1.3 Calculation of Sines and Cosines

By using Equation 4.13 an expression for the tangent as a function of cot 2φ
can be obtained. This derivation is shown here. First Equation 4.13 is
rewritten to:

cot 2φ =
1
2t
− t

2
(4.14)

Where the fraction on the right hand side has first been split into two terms
and rewritten using t = s/c. All terms are gathered on the left hand side,
and the resulting equation is multiplied by 2t giving us:

t2 + 2t cot 2φ− 1 = 0 (4.15)

Using the quadratic formula with the discriminant in the denominator, t can
be expressed in terms of cot 2φ. This gives:

t =
sign (cot 2φ)

|cot 2φ|+
√

cot2 2φ+ 1
(4.16)

We now have an expression for tangent. Using this an expression for co-
sine can be derived in terms of tangent using the Pythagorean formula for
tangents and secants:

c2 + s2 = 1 (4.17)

Dividing through by c2:
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1 + t2 = sec2 (4.18)

Using this an expression for cosine can be obtained directly:

c = 1√
t2+1

(4.19)

s = tc (4.20)

Since t = s/c. Using these equations the sines and cosines can be calculated
directly, without calculating the rotation angle.[Press et al., 2002]

4.1.4 Optimizations

When the cosines and sines have been calculated, they can be inserted into
the Jacobi matrix and the diagonalized matrix of eigenvalues can be ob-
tained by doing a number of successive Jacobi rotations. This would mean
that Equation 4.3 would have to be invoked a large number of times. Ma-
trix multiplication is a slow process on a computer because it involves a lot
of multiplications. Multiplying two n × n matrices involves n3 multiplica-
tions. Because this step is the computationally most expensive in the Jacobi
routine it is worth optimizing. Analyzing Equation 4.3 it can be seen that
only row and column p and q are affected by the transformation. This of
course implies that computing only the affected elements can greatly im-
prove speeds. In fact, the number of multiplications per rotation is reduced
from n3 to 8n (excluding multiplications used in calculations of sine and
cosine).

Lastly, the stop criteria for the Jacobi routine should be noted. The
routine stops when the sum of the off-diagonal elements becomes equal to
zero. Of course this will only happen if an infinite number of rotations are
performed. But since a computer can only do calculation with finite preci-
sion, there is no need to go further than machine precision. Therefore the
routine stops when the sum of the off-diagonal elements is zero to machine
precision.

4.2 From a Complex to a Real Matrix

The tight-binding matrices obtained using the Bloch theorem are complex
matrices. The Jacobi method implemented in the program is not well suited
for complex matrices, so a method for transforming the matrix into a real
matrix is used. Starting with the matrix eigenvalue problem which has to
be solved:
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Hc = Ec (4.21)

Now splitting the equation into it’s real and imaginary parts using H =
HR + iHI and c = cR + icI:

(HR + iHI) (cR + icI) = E (cR + icI) (4.22)

Multiplying out the parentheses and splitting the equation into two equa-
tions, one for the real part and one for the imaginary part gives the following
matrix eigenvalue problem:

(
HR −HI

HI HR

) (
cR

cI

)
= E

(
cR

cI

)
(4.23)

The matrix in Equation 4.23 is four times as big as the original matrix,
but its elements are all entirely real valued. Furthermore, the matrix is
hermitian if the original matrix is hermitian. The number of eigenvalues in
the new matrix is twice the number of eigenvalues in the original matrix,
but it turns out that the number of distinct eigenvalues is the same.

4.3 Constructing the TB Matrices

This section describes the construction of the tight binding matrices used for
computing the band structures and the energy levels. First the construction
of the TB matrix for MEH-PPV is shown. When constructing the matrix
only the PPV chain is considered and not the MEH group. A PPV monomer
with numbered atoms is shown in Figure 4.1

Figure 4.1: PPV with numbered atoms

Atom 8 interact with atom 6 in the next unit cell through a single bond.
Therefore an extra factor of eika is introduced at matrix element [8, 6] and
e−ika at element [6, 8]. The matrix used for the calculations is:
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

α βD 0 0 0 βS 0 0
βD α βS 0 0 0 0 0
0 βS α βD 0 0 βS 0
0 0 βD α βS 0 0 0
0 0 0 βS α βD 0 0
βS 0 0 0 βD α βS βSe

−ika

0 0 βS 0 0 βS α βD

0 0 0 0 0 βSe
ika βD α


(4.24)

βS and βD symbolize single and double bonds respectively. This matrix
is then rewritten to a real matrix using the procedure described in Section
4.2.

4.4 Using the Program

This section describes how the program is used in practice. The program
supports calculation of energy levels of planar molecules like PPV and C60.
Strictly speaking C60 is not a planar molecule, but it is close enough for the
program to calculate the energy levels to a good approximation. The energy
levels are calculated by first loading the .xyz file of the molecule by selecting
”File → Load File”. In the dialog that appears, an .xyz file is selected. Only
.xyz files are supported, and the program is very strict about the format of
the file. The first line has to be the number of atoms in the molecule. The
second line should be the name of the molecule, this line cannot be omitted!
The rest of the file should be the actual data in the following format:

Format: Atom Type X-Coord Y-Coord Z-Coord Newline

The fields should be separated by spaces. When a file has been loaded
the energy values can be calculated by selecting ”Calculations → Energy
Levels”. The energy values are not plotted in the program, but the values
can be saved to a file by selecting ”Files → Save File”.

Band structures can be calculated by choosing ”Calculations → Energy
Bands”. One of the predefined polymers can be chosen, this means that
the band structures calculated are not affected by the file which has been
loaded. Loading a file only affects calculation of energy levels.

The H matrices corresponding to the chosen polymer is hardcoded into
the program, but the program will do the eigenvalue calculations when a
polymer has been selected. This will take a few seconds depending on the
polymer chosen. When calculations has ended the band structure is plotted
in the window. Band structure data can be saved to a file in the same
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Figure 4.2: An illustration of the Full Width Half Maximum factor.

manner as saving the energy levels. Energy levels and band structure data
are saved to the same file.

Lastly, if ”Calculations → Exciton Field/Coulomb” is selected, the pro-
gram draws the curve describing the relationship between the coulomb at-
traction between holes and electrons and applied field strength. The field
strength can be varied by pressing the up/down keys.

4.5 Calculation of the Absorbance Spectra

The purpose of this section is to clarify the calculation of the absorbance
spectrum. However the derivation of the primary equation used is beyond
the scope of this project and will not be performed. Therefore the main
topic here is the approximations used and the application of the equation
to the present situation.

In order to calculate the absorbance it is not sufficient to simply expect
very sharp absorbance lines corresponding to differences in energy levels.
There are two main points that has to be taken into consideration:

Firstly not every transition between energy levels is allowed. A factor
called the dipole matrix element is introduced to describe which transitions
that are allowed and their probability.

Secondly, the solution contains a very large amount of molecules each
with a minuscule difference in surroundings giving rise to small variations in
the difference between energy levels. In order to describe this, an approxi-
mation called full width half maximum is introduced. This factor must be
determined by measurements and describes the width of the peaks in the
absorbance spectrum. See Figure 4.2 for an illustration of the two factors.

The equation for calculating the absorbance spectrum is given by Equa-
tion 4.25.

α(ω) =
1
3
(αx(ω) + αy(ω) + αz(ω)) (4.25)
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The total absorbance is calculated as the sum of the absorbance of x, y,
and z polarized light. The expression for the absorbance of x polarized light
is given in Equation 4.26.

αx(ω) = k
∑

nocc,munocc

(~Γ)2|Xnm|2

(Enm − ~ω)2 + (~Γ)2
(4.26)

where k is a constant which is dependent on the number of molecules per
volume, ~Γ is a value for the full width half maximum of peaks, Xnm is the
dipole matrix element and is dependent on the direction under evaluation,
Enm = Em − En is the energy difference between the m’th and the n’th
energy state and ~ω is the energy of the incident photon.

The dipole matrix element is given in Equation 4.27.

Xnm =
∫
ψ∗nxψmd

3r (4.27)

where ψn is the molecular wavefunction with the n’th energy level of the
molecule and x is an operator for the position. For x polarized light the
operator equals difference in x-coordinate between a reference and the atom
under evaluation. In the tight-binding approximation of Section 3.5 it was
stated that the molecular wavefunction can be approximated as a sum of
atomic wavefunctions or orbitals, see Equation 4.28.

ψn(r) =
∑

c(n)
α πα(r) (4.28)

where cnα is the α’th element of the n’th eigenvector.
In order to ease the calculation of the integral, a very rough approxima-

tion is applied given by Equation 4.29.

∫
πα(r)xπβ(r)d3r =

∫
πα(r)2xd3r for α = β

0 else (4.29)

Thereby Equation 4.30 yields for the dipole matrix element.

Xnm =
∑
α

cnαc
m
α

∫
(πα(r))2xd3r (4.30)

To evaluate the integral of Equation 4.30 it is useful to split it in two
and consider Figure 4.3.

∫
(πα(r))2xd3r =

∫
(πα(r))2(x− xα)d3r +

∫
(πα(r))2xαd

3r (4.31)
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Figure 4.3: The integrand under evaluation is xπ2 = (x− xα)π2 + xαπ
2. The first

integrand is an odd function while the second is the π-orbital times a constant, xα.

The product of the squared π orbital and the x−xα will always be an odd
function, hence the first integral of Equation 4.31 will always equal zero. xα

is a constant under integration and due to normalization, the second integral
equals xα.

Therefore Equation 4.32 yields for the matrix dipole element.

Xnm =
∑
α

c(n)
α c(m)

α xα (4.32)

Equation 4.32 is the summation of the dot product between the n’th and
m’th eigenvector over all the atoms of the molecule under evaluation. Note
that the expression is independent of the chosen point of reference as the
eigenvectors per definition are orthogonal.

Thereby every term of Equation 4.26 has been clarified allowing the
calculation of theoretical absorbance spectra.

4.6 Results from Theoretical Calculations

This section presents the theoretical results obtained from the calculations
by the program. The band structure of PPV and PPP has been calculated
using the infinite model, they are shown in Figure 4.5 and Figure 4.4. The
calculated band gap of PPV is approximately 2.8 eV and the band gap of
PPP is 1.0 eV indicating that they are both semiconductors.

The absorbance spectrum of C60 and PPV has been calculated used the
theory described in Section 4.5. The calculated spectra are shown in Figure
4.6 and Figure 4.7.
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Figure 4.4: The band structure of PPP. The bands are calculated using a lattice
constant of 1
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Figure 4.5: The band structure of PPV. The bands are calculated using a lattice
constant of 1

Figure 4.6: The calculated absorbance spectrum of C60
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Figure 4.7: The calculated absorbance spectrum of PPV
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Chapter 5

Materials Methods

The purpose of this chapter is to clarify the process of the experiments
conducted in this project. That includes the various methods used for pro-
ducing and characterizing the solar cell and its constituents. Finally a list
of the compounds used is presented.

5.1 Making the Solar Cell

To make a solar cell, different materials are needed, and the materials have
to be processed by different methods. In this section, the processing of
the materials will be specified. First of all, a clean glass plate with a thin
layer of ITO (Indium Tin Oxide) is needed. These plates are bought from
Delta Technologies. The ITO acts as the first part of the solar cell, the first
electrode. A bit of the ITO has to be removed, to avoid short-circuiting.
This will happen if the two conducting layers of the solar cell touch each
other. The ITO that has to be removed is etched away with boiling aqua
regia, which is a solution of concentrated hydrochloric acid and concentrated
nitric acid. As seen in Figure 5.1, is the lower part of the ITO removed when
it has been immersed into the aqua regia for ten seconds. Afterwards is the
plate washed in water to clean the plate for remaining aqua regia.

When a solar cell is made, it is important that the materials are clean. To
clean the plate, it is first washed with soap; secondly it is put in ultrasonics
bath with the solvent acetone, then water and finally ethanol. After the
plate have been cleaned with ultra sound, the plate is washed with ethanol
and dried with a nitrogen pistol.

5.1.1 Solutions

Two solutions has to be made, a MEH-PPV:PCBM-solution, and a PEDOT:PSS-
solution. The concentrations of the different chemicals are described in
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Figure 5.1: A piece of the ITO is etched by the Aqua Regia.

Short name CAS#

MEH-PPV 138184-36-8

C60 PCBM 160848-22-6

THF 109-99-9

PEDOT:PSS 155090-83-8

TWEEN-20 9005-64-5

Table 5.1: The chemicals used for production of the solar cell.

the table Table 5.2 and Table 5.3. MEH-PPV and PCBM is dissolved in
THF(Tetrahydrofuran), which is a polar solvent, it is important to be aware,
that THF has to be kept in a glass bottle. The MEH-PPV:PCBM-solution
has to be treated carefully, the chemical MEH-PPV(PolyPhenylene Veny-
lene) is very light sensitive so it has to be wrapped in silver paper to keep
the MEH-PPV from reacting with sunlight. PCBM is added in order to
make the dissociation of excitons more efficient.

In the PEDOT:PSS solution, Table 5.3, PEDOT:PSS(0,7%) is used,
which means that 0,7% of the solution is PEDOT:PSS, the remaining 99,3%
is water. Tween is added to make the solution more viscous.

MEH-PPV PCBM THF

50mg 200mg 15ml

Table 5.2: The MEH-PPV-solution made for the solar cell.
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PEDOT:PSS(0.7%) TWEEN-20

1000µl 100µl

Table 5.3: The PEDOT:PSS-solution made for the solar cell.

Figure 5.2: A layer of PEDOT:PSS and MEH-PPV is spun on the plate.

5.1.2 Spin Coating

The two solutions have to be spun over the plate. The first layer is PE-
DOT:PSS. When the PEDOT:PSS has been spun onto the plate it has to
be heated in order to evaporate the water from the solution. The second
layer is MEH-PPV which functions as the active layer in the solar cell. The
PEDOT:PSS layer is spun with 1000 rpm and the MEH-PVP layer is spun
with 750 rpm both for 25 seconds. Figure 5.2 shows a model of the structure.

5.1.3 Creating the Calcium and Aluminium Layer

Firstly a calcium layer is needed on the plate, this layer is made to increase
the built-in electric field. Secondly the aluminium layer is made, this has
the function as the second electrode, also it protects calcium that is a very
reactive metal. To create these layers the metals (calcium and aluminium) is
evaporated onto the plate and this is done in a vacuum to allow evaporation
and make sure that it is a clean evaporation. First a piece of metal is
placed in a evaporation boat, the plate is placed above the metal, then the
vacuum has to be created. To create such vacuum two pumps are needed.
First a primary pump, this is a rotation pump, that will make a pressure of
approximately 1× 10−1 mBar. Secondly the other pump is turned on, this
is a diffusion pump and it will make the pressure fall down to 1.5 × 10−4

mBar, which is the least needed to make sure the evaporation will be pure.
First the calcium is evaporated onto the solar cell, an effect of 300 W is

set over the evaporation boat containing the calcium, and a layer of calcium
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will be created on the cell. To control the size of the layer, a sensor is
measuring the amount of calcium evaporated onto the plate. This is done
by a plate consisting of crystals, which is set to a resonant frequency. When
the evaporated calcium hardens on the crystal plate, the frequency will
change. A program can calculate the thickness of the layer by the change
in frequency. When the thickness of the calcium layer is approximately 75
nm, the effect is set to 0 W, so the evaporation of the calcium will stop.

Secondly it is needed to vaporize the aluminium. An effect of 250 W is
set over the evaporation boat containing the aluminium, this will heat up the
aluminium, which will vaporize and thereby create a thin layer of aluminium
on the plate above the calcium. When a thickness of approximately 100 nm
aluminium has been vaporized on the plate, the pressure is equalized. The
solar cell is then taken out of the vacuum chamber and is tested by measuring
IV-curves of the solar cell.

Figure 5.3: Shows what happens inside the vacuum chamber, how the aluminium
is vaporized on the solar cell.

The procedure of making a polymer solar cell has now been explained,
in this project, different types of polymer solar cells has been made, to find
the advantage of the different layers, The different types of solar cells made,
is seen in Table 5.4.

5.2 Measuring Absorbance

When absorbance is measured, it is done by a photodetector, able to measure
different wavelengths of light, Figure 5.4. The spectrometer used is Ocean
Optics Inc. ISS-UV-VIS.
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Type ITO PEDOT:PSS MEH-PPV PCBM Calcium Aluminium

1 X X X X X X

2 X X X X X

3 X X X X X

4 X X X X

Table 5.4: Shows the different types of solar cells which will be made.

Figure 5.4: A polychromatic light spectrophotometer

A light beam is sent through the sample, and the sample will absorb
some of the light. Some of the light will pass through and hit the optical
lattice, which will divide the light into different wavelengths and thereby
make it possible for the photodetectors to measure which wavelengths has
been absorbed and which has not.

When a solar cell is made, absorbance is measured of the MEH-PPV:PCBM
and PEDOT:PSS, this is done during the production of the solar cell. When
absorbance of the MEH-PPV:PCBM layer is measured, it is with glass, ITO
and PEDOT:PSS as reference (If PEDOT:PSS is not used in the solar cell,
is it not used as reference). When absorbance of PEDOT:PSS is measured,
it is with glass and ITO as reference.

The measurements are made, to find the absorbance of the individual
layers, and to see if they absorb too much light, to function as a solar cell.

5.3 Measuring the IV Characteristic

In order to compare various solar cells it is necessary to measure the charac-
teristic values: Voc, Isc, the fill factor and the efficiency, η. All these factors
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Figure 5.5: The setup for measuring the IV characteristics of solar cells.

can be determined from the IV characteristic of a solar cell and the power-
output from the lamp. Therefore an IV characteristic will be performed
under illumination and in dark for each solar cell in this project.

The IV characteristic is a measurement of the current as a function of the
applied voltage. There are various ways to achieve this. The most simple is
with an oscilloscope, as it is able to apply a varying voltage and picture the
corresponding current on a screen. It is however not very precise as it was
not possible to get data output to a computer.

Therefore a setup with a Keithly model 6517A Electrometer was used.
This electrometer is able to supply a voltage and measure the current. Fur-
thermore it is possible to connect it to a computer, which provides the
possibility of automatization of the measurements [Group442, 2006]. The
setup is displayed in Figure 5.5.
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Chapter 6

Results

This chapter presents the results obtained form the experiments, which have
been carried out in the laboratory during this project. The chapter is divided
into two sections. One presenting the results obtained form the absorbance
experiments and another presenting the results from the IV characterization
of the solar cells.

6.1 Absorbance

The absorbance of the separate parts of the polymer solar cells has been
measured, and are plotted in Figure 6.1.

Figure 6.1: The graph shows the absorbance measured of the materials used for the
solar cells without PEDOT. When the absorbance of glass is measured, it is with
air as reference. For ITO glass is reference. For MEH-PPV:PCBM glass and ITO
is reference.
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Figure 6.1 shows as expected, that MEH-PPV:PCBM absorbs light at
the wavelengths 400nm to some above 550nm with a peak at 500 nm. It
also absorbs light with a wavelength below 400nm. ITO and glass does not
absorb any light in the visible area and, more importantly, not in the area
where MEH-PPV:PCBM absorbs light, this is also expected from Figure
2.7.

Figure 6.2: The graph shows the absorbance measured of the materials used for the
solar cells with PEDOT. When the absorbance of glass is measured, it is with air as
reference. For ITO glass is reference. For PEDOT:PSS glas and ITO is reference.
For MEH-PPV glas, ITO and PEDOT:PSS is reference.

Figure 6.2 also shows, as in Figure 6.1, that MEH-PPV:PCBM, glass
and ITO absorb as expected. Though, when applying PEDOT:PSS to the
plate, a negative, and a generally very low, absorbance is shown. The neg-
ative absorbance is caused by PEDOT:PSS when glass is used as reference.
PEDOT:PSS will remove some of the reflective ability of glass, and thereby
make more light pass through. The low absorbance is due to the very thin
layer which has been spun over the plate, making PEDOT:PSS absorb only
a small amount of light. In the absorbance measurements made in this
project, it is seen, that even though PEDOT:PSS has a broad absorbance
area, it absorbs almost no light when applied to a glass plate in thin films.
This is important, so that none of the light MEH-PPV:PCBM absorbs, will
be absorbed by PEDOT:PSS.

6.2 IV characterization

This section presents the IV-curves from the solar cells, which have been
analyzed in the laboratory.

Figure 6.3 shows an IV-curve obtained from an ordinary silicon solar cell
under illumination. ISC , Im, Vm, and VOC are marked on the curve.
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Figure 6.3: A light IV-curve from a silicon solar cell, measured at applied voltage
between 0 and 2 V. ISC , Im, Vm, and VOC is marked on the curve at 12100 µA,
10600 µA, 1.579 V, and 1.99 V, respectively.

Figure 6.4 and Figure 6.5 show IV-curves from the polymer solar cells
that have been made in the laboratory. Both figures display IV-curves from
the same five polymer solar cells (A-E) under illumination. Figure 6.4 shows
the measured IV-curve from -1 to 1 V and Figure 6.5 from 0 to 1 V. Figure
6.5 is made in order to make it easier to see the details in this interval.
Solar cell A-C are made by this group and D-E are made by group 4.42
from Aalborg University.

Solar cell A, D and E are all ITO/MEH-PPV:PCBM/Al solar cells, but
they are made from different solutions. Solar cell A is made from the so-
lution described in Section 5.1. The two other solar cells are made from
two different solutions where MEH-PPV and PCBM have been dissolved in
toluene, D 6.67 g/L and E 16.67 g/L. The ratio between MEH-PPV and
PCBM is 20 : 80 for all the polymer solar cells.

Solar cell B and C are both ITO/PEDOT:PSS/MEH-PPV:PCBM/Al
solar cells and they are made from the same MEH-PPV:PCBM and PE-
DOT:PSS solutions.

In Section 5.1 it was stated that solar cells with a calcium layer in be-
tween the active and aluminium layer would be produced but unfortunately
those polymer solar cells were not functional.

The IV-curves, which were measured in the dark are shown in Figure
6.6 and Figure 6.7. Figure 6.6 shows the IV-curves from solar cell A,C,D,
and E. Unfortunately the measurement on solar cell B failed. As it can be
seen in Figure 6.6 is it difficult to see any details on the IV-curves from solar
cell A,C, and E since the IV-curve from solar cell D dominates the picture.
Therefore the IV-curves from solar cell A, C, and E are also displayed in
Figure 6.7.

69



6. RESULTS

Figure 6.4: Light IV-curves from polymer solar cells A-E, measured at applied volt-
age between -1 and 1 V. Solar cell A,D, and E are all ITO/MEH-PPV:PCBM/Al
solar cells. Solar cell B and C are ITO/PEDOT:PSS/MEH-PPV:PCBM/Al solar
cells.

In Figure 6.8 the IV-curve of solar cell B is presented again, but this
time ISC , Im, VOC , and Vm are marked.

In Table 6.1 ISC , Im, VOC , Vm, Pm, and the fill factor (FF) are listed
for all the solar cells.

Type ISC (µA/cm2) VOC (V) Im (µA/cm2) Vm (V) Pm (µ W/cm2) FF

Si 605 1.99 530 1.579 846.41 0.7

A 2.61 0.47 1.25 0.2 0.25 0.2

B 6.41 0.87 2.39 0.3 0.717 0.129

C 7.44 1.05 3.04 0.35 1.06 0.136

D 8.23 0.415 3.44 0.12 0.413 0.121

E 28.7 1.1 11.8 0.28 3.304 0.104

Table 6.1: The measured ISC and VOC from the silicon solar cell (Si) and the
polymer solar cells A-E are listed. Furthermore is the calculated Im, Vm, Pm and
the the fill factor (FF) listed for each solar cell. The unit µA/cm2 referrer to the
current produced per active area of a solar cell.
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Figure 6.5: Light IV-curves from polymer solar cell A-E, measured at applied voltage
between 0 and 1 V. Solar cell A,D, and E are all ITO/MEH-PPV:PCBM/Al solar
cells. Solar cell B and C are ITO/PEDOT:PSS/MEH-PPV:PCBM/Al solar cells.

Figure 6.6: Dark IV-curves from polymer solar cell A,C,D, and E measured at
applied voltage between -1 and 1. Solar cell. Solar cell A,D, and E are ITO/MEH-
PPV:PCBM/Al solar cells and solar cell C is an ITO/PEDOT:PSS/MEH-
PPV:PCBM/Al solar cell.
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Figure 6.7: Dark IV-curves from polymer solar cell A,C, and E, measured at ap-
plied voltage between -1 and 1. Solar cell. Solar cell A and E are ITO/MEH-
PPV:PCBM/Al solar cells and solar cell C is an ITO/PEDOT:PSS/MEH-
PPV:PCBM/Al solar cell.

Figure 6.8: Light IV-curve from solar cell B, measured at applied voltages between
0 and 1 voltage. ISC , Im, VOC , and Vm marked on the curve at 6.41 µA, 2.39
µA, 0.87 V, and 0.3 V, respectively. Solar cell B is an ITO/PEDOT:PSS/MEH-
PPV:PCBM/AL solar cell.
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Chapter 7

Discussion

This chapter discusses the results obtained from the experiments and the
theoretical results obtained from the calculations made by the program. The
chapter starts with a discussion of some of the difficulties which was faced
in the production of the solar cells. Thereafter a discussion of the IV-curves
is made, and finally a discussion of the theoretical results is made.

7.1 Difficulties

During the production of the polymer solar cell, different problems have
been faced. Firstly THF that has been used as solvent for PCBM and
MEH-PPV had certain difficulties with dissolving the two materials. This
made it difficult to spincoat a pure and homogeneous film and this again
affects the charge transport of the solar cell. The importance of a high
vacuum of 1.5 × 10−4 mBar has also created problems during the process,
as the pressure increased during the evaporation of aluminium and calcium.
This resulted in an unclean evaporation and a non functional solar cell.

The lifetime of a polymer solar cell was limited, which means that mea-
surements has to be made fast, or the solar cell will die out before any
measurements are made. During measurements of IV-curves under illumi-
nation, the lamp drastically increases the temperature of the cell. Therefore
the cell was not in thermal equilibrium.

All these factors played a great role in the production and measurements
of the solar cells. Only a limited number of functional solar cells was pro-
duced due to the pressure increasing rapidly under evaporation. The limited
lifetime of the cells made it troublesome to conduct reliable measurements
of the cells.
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7.2 IV Characterization

This part of the discussion will deal with the performance of the analyzed
solar cells. As mentioned in Section 6.2 only five functional polymer solar
cells were produced. Therefore it is hard to make any conclusions on how
the different concepts affect the performance of the polymer solar cell. Even
though, the performance of the different solar cells will be compared with
each other and analyzed in relation to their structure. All the measured and
calculated data form the solar cells can be found in Table 6.1

As it can be seen in Table 6.1 the performance of the silicon solar cell
is superior to the polymer solar cell as expected. This superiority is even
more clear when comparing the IV-curves, see Figure 6.3 and Figure 6.5.
The IV-curve from the silicon solar cell is a curve similar to the curve from
the optimal model, described in Section 3.2. This indicated that the silicon
solar cell is effective in the dissociation of excitons and in the transport of
the charge carrier afterwards. The IV-curves from the polymer solar cells
however do not fit to the optimal IV-curve and the reason for this can be hard
to explain. One problem could be the charge transport in the active layer,
where a bad charge transport will result in a large series resistances. The
reason why it is believed that the polymer solar cells ability to transport
charges is low is supported by the fact that the solar cells were able to
function as a light diode. The introduction of PCBM should increase the
electron conductivity of the active layer and thereby lower its ability to
emit light when a voltage is applied. This curvature of the IV-curve is also
responsible for the low fill factor and Pm of the polymer solar cells, see
Figure 6.8.

When comparing solar cell A with solar cell B and C (Figure 6.4 and
Figure 6.5) it can be seen that VOC is highest for solar cell B and C. VOC for
A, B, and C is 0.47, 0.87, and 1.05 V respectively. The increased voltages are
probably caused by the introduction of the PEDOT:PSS layer, due to the
difference in work function between ITO and PEDOT:PSS. The observed
value of ISC for the three solar cells was 2.61, 6.41, and 7.44 µA/cm2 for A,
B, and C. As it can be seen the current is more than doubled for solar cell B
and C compared to A. This increase is probably a consequence of a better
junction at the high work function electrode caused by the PEDOT:PSS
layer and the increased open circuit voltages.

When comparing the IV-curves from solar cell B and C, present in Figure
6.4 and Figure 6.5, there is a similar behavior between them. This similar
behavior was expected since the two solar cells have been made using the
same procedure.

The active layer in solar cell D and E have been made from a solution
where MEH-PPV and PCBM was dissolved in toluene and that might have
had an impact on the active layer. When comparing D and E with A is
it clear that ISC was increased significantly. ISC was increased from 2.61
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µA/cm2 for solar cell A to 8.23 and 28.7 µA/cm2 for solar cell D and E.
This increase may indicate that MEH-PPV and PCBM are dissolved more
homogeneously in toluene than in THF. The concentration difference in the
two solutions used in solar cell D and E is probably the reason why ISC is
highest in solar cell E. Since the high concentration of MEH-PPV:PCBM will
give a better absorbing layer and thereby increasing the amount of produced
charges. Both layers were spin coated at 750 rpm.

VOC is almost the same for solar cell A and D, 0.47 and 0.415 V, as
expected since no improvements have been made at any of the electrodes.
VOC of solar cell E is the highest measured for all the polymer solar cells,
1.1 V. This high VOC is unexpected since no improvements have been made
in order to increase the built-in potential difference. The origin for this high
VOC could be an exceptional high work function of the ITO layer.

The dark IV-curves from the polymer solar cells are presented in Figure
6.6 and Figure 6.7. As it can be seen the dark IV-curve for solar cell D
differs from the rest. The reason for this can be that the dark IV-curves
was not measured in absolute darkness and that might have affected the
measurement. The rest of the dark IV-curves show low values of voltages
and currents as expected.

7.3 Calculations

The band gap of PPV was calculated to 2.7 eV. This is not in too well
accordance with the spectrum of the lamp which peaks at 500 nm. 2.7 eV is
a large bandgap for a solar cell, because only light with wavelengths shorter
than 460 nm are absorbed and the spectrum of the sun is most intense
at wavelengths between 400 nm and 550 nm. The bandgap of PPV has
been measured to 2.14 eV by [Chambers and Selmic, 2005]. The too large
calculated band gap can be ascribed to the rather rough approximations
made in the Simple Hückel Method. In a more refined model the resonance
integral between atoms that are not directly bonded should not simply be
zero. Also, the resonance integral of all directly bonded atoms is assumed to
be equal. This does not appreciate the small variations in the local spatial
environment of the atoms.

The calculated absorbance spectrum of PCBM is blue shifted by about
30 nm compared to the measured spectrum. Again this can be ascribed to
the rough approximations made. The calculated absorbance spectrum of
PPV has a peak at 390 nm. This is about 100 nm blue shifted compared to
the measured absorbance spectrum of PPV which peaks at about 480 nm.
This could be due to the calculated band gap being too large.
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Chapter 8

Conclusion

In this project calculations of band structures and absorbance spectra of
conjugated polymers and fullerenes have been made and different types of
polymer solar cells have been produced. This chapter will be used to con-
clude on the problem statement in Section 2.8.

The program EBCalc have been developed in this project and its abil-
ity to calculate band structures and absorbance spectra have been used to
calculate band structures and absorbance spectra for the conjugated poly-
mers PPP and PPV. Furthermore an absorbance spectrum of the fullerene
C60 has been calculated. The calculated band structures and absorbance
spectra were compared with experimentally obtained data. This compari-
son shows a reasonable accuracy of the calculated data in spite of the rough
approximations that have been made in the model used for the calculation.

Only a limited number of functional polymer solar cells was produced
and analyzed. The purpose with this polymer solar cell production was to
find a relation between changes at the electrodes and the performance of the
solar cells. Only the introduction of a PEDOT:PSS layer in between the ITO
and the active layer succeed. This introduction of a PEDOT:PSS layer was
reflected in the performance of the solar cells by an increase in the ISC and
VOC . Even though this increase was observed more experiments have to be
made before it can be concluded, that an introduction of PEDOT:PSS layer
in a ITO/MEH-PPV:PCBM/Al solar cell will increase ISC and VOC . Beside
this, results obtained by this group and group 4.42 from Aalborg University
indicates the dissolving of MEH-PPV and PCBM in toluene gives at better
active layer than if they were dissolved in THF. This statement is also based
on a limited amount of data and therefore more experiments must be carried
out before this can be verified.
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Appendix A

Doping

Doping in semiconductor production refer to the process of intentionally in-
troducing impurities into pure semiconductor in order to alter the conduc-
tivity of the semiconductor. Depending of the impurity the doping process
is divided into two classes: n- or p-doping.

A.1 N-doping

The n-doping of semiconductors refer to a doping process of the semicon-
ductor which increases the density of the electrons relative to that of the
holes. The letter n in n-doping is used since the majority of charge carriers
are negative.

A perfect silicon crystal will be used as the starting point for the expla-
nation of n-doping. Silicon is a Group IV atom; hence it has four outer-shell
or valence electrons. In silicon crystals these four valence electrons are used
to form four covalent bonds with four neighbouring atoms.

When an impurity in the form of a Group V atom is introduced into the
crystal it will use four of its five valence electrons to form covalent bonds
with four neighboring silicon atoms, Figure A.1. The fifth valence electron
will not be used in a covalent bond and it will therefore be nearly free, only
held loosely in a Coulombic bond state with the parent atom. The energy of
this nearly free electron lies in between the valence and conducting bands of
the semiconductor, see Figure A.1. Such an impurity atom is called a donor
atom because it donates an electron to the lattice.[Nelson, 2003]

It is relatively easy to ionize a donor atom because the gab between the
conduction band and donor bound level is small, typically in the order of
0.05 eV. The average energy of an electron at room temperature is about
kB ·T = 0.025 eV. Therefore only a small amount of thermic energy is needed
to excite the electron from the donor bound level to the conduction band
and thereby increasing the conductivity of the semiconductor.[Kittel, 2005]
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Figure A.1: (Left)Two-dimensional silicon crystal which has been n-doped with
Arsenic. (Right) Band structure of an n-doped semiconductor. Modified from
[O’Connell, 2006]

A.2 P-doping

P-doped semiconductors are semiconductors where the density of holes in
relation to electrons has been increased. The letter p is used to mark this
type of doping since the charge carriers are positive electron holes.

A perfect silicon crystal will also be used as the starting point for the
explanation of this type of doping. The difference between n- and p-type
doping lies in the type of atoms used to dope the crystals. To p-dope a
silicon crystal a Group III atom is used, instead of a Group V atom as in
n-doping. A Group III atom contains one valence electron less than silicon,
which makes it unable to form covalent bonds to all of its four nearest
neighbor atoms, Figure A.2. Therefore only three of the neighboring silicon
atoms will form covalent bonds with the impurity atom. The fourth bond
can be formed if the impurity atom is ionized by accepting an electron from
a silicon atom elsewhere in the lattice, hence the atom is called an acceptor
atom. Such an ionization of the impurity atom releases an electron hole into
the valence band. The energy of the ionized state is a small amount higher
than the energy of the valence band electron, resulting in an introduction
of an energy level in between the valence and conducting band, see Figure
A.2. The size of this new energy gab is about 0.05 eV which make a thermic
excitation a room temperature possible.[Nelson, 2003]

These electron holes are capable of carrying a current if an electric field is
applied to the semiconductor. Therefore the presence of these electron holes
increases the conductivity of the semiconductor.[Serway and Jewett, 2004]

The amount of impurities which is needed to increase the conductivity
of a semiconductor is very small. In the p-doping of silicon, one boron
atom to 105 silicon atoms increases the conductivity of pure silicon at room
temperature by at factor of 103.[Kittel, 2005]
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Figure A.2: (Left)Two-dimensional silicon crystal which has been p-doped with
boron. (Right) Band structure of a p-doped semiconductor. Modified from
[O’Connell, 2006]
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Appendix B

Junctions

The pn junction in a silicon solar cell was shortly described in Section 1.2.
This appendix will give a more extended description of the PN junction. The
following terms will be treated: Built-in potential barrier, built-in electric
field, and space charge width.

B.1 Built-in potential barrier

Lets consider a single crystal semiconductor where one region of the crystal
is p-doped and another is n-doped. For simplicity the doping concentration
in each region are uniform and there is an abrupt change in the doping
at the junction. This type of junction is normally referred to as a step
junction.[Neamen, 1992]

At the interface between the two regions there exists a high density
gradient in both electron and hole concentration. This means that electrons
will start to diffuse from the n-doped region into the p-doped region and
vice versa. When electrons from the n-doped region start to diffuse into
the p-doped region they leave positively charged donor atoms behind in the
n-doped region. The hole from the p-doped region leave negatively charged
acceptor atoms behind in the p-doped region. The diffusion continues until
a thermal equilibrium is established and a net positively and negatively
charged region is created. These two regions are referred to as the space
charged region or the depletion region since all the free charge carriers are
swept out of this region. When this thermal equilibrium is reached the Fermi
levels have aligned, see Figure B.1[Neamen, 1992]

As it can be seen in Figure B.1 are the conduction and valence band
energies bend through the space charge region. This bending occurs since
the relative position of the conduction and valence bands with respect to
the Fermi levels changes between the p- and n-regions.
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Figure B.1: The energy-band diagram for a pn junction in thermic equilibrium.

Electrons in the conduction band in the n-region see a potential barrier
if they try to move into the conduction band in the p-region. This potential
barrier is referred to as the built-in potential barrier and is denoted Vbi.
Holes in the p-region meet the same barrier when they try to move into the
valence band in the n-region.[Neamen, 1992]

To determine the built-in potential barrier it is necessary to look at the
intrinsic Fermi level, which is equidistant from the conduction band edge
through the junction. The built-in potential barrier is equal to the difference
between the intrinsic Fermi levels in the p- and n-region.[Neamen, 1992] The
two potentials φFp and φFn is defined as shown in Figure B.1, which means
Vbi is equal to:

Vbi =| φFn | + | φFp | (B.1)

In order to determine φFp it is necessary to look at the electron concen-
tration (n0) in the conduction band in the n-region, which is given by:

n0 = Ncexp[(EF − Ec)/kT ] (B.2)

Nc is the effective density of state function in the conducting band. EF

is the energy at the Fermi level and Ec is the energy at the conduction band.
T is the temperature of the semiconductor and k is Boltzmanns constant.

The electron concentration in the conducting band of an intrinsic semi-
conductor is give by:

ni = Ncexp[
(Ec − EFi)

kT
] (B.3)

By using Equation B.3 Equation B.2 can be written in the form:

n0 = niexp[
(EF − EFi)

kT
] (B.4)
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Where EFi is the intrinsic Fermi energy. The potential φFn can then be
defined as:

eφFn = EFi − EF (B.5)

e is the elementary charge. When Figure B.5 is used and n0 set equal to
Nd, which is the net donor concentration in the n-region, φFn is given by:

φFn =
−kT
e

ln

(
Nd

ni

)
(B.6)

An expression for φFp can be derived in a similar way:

φFp =
kT

e
ln

(
Na

ni

)
(B.7)

Na is the net acceptor concentration in the p-region. Finally the built-in
potential barrier form the step junction is found by substituting Equation
B.6 and Equation B.7 into Equation B.8:

Vbi =
kT

e
ln

(
NaNd

n2
i

)
(B.8)

B.2 Electric Field

This section will be used to drive an expression for the electric field, which
arise due to the creation of positive and negative space charge densities.
Figure B.2 illustrates the volume charge density distribution. It is assumed
that the doping is uniform and that the space charge regions abruptly ends
at x equal to +xn and −xp.

The electric field can be determined by using Poisson’s equation which
for a one-dimensional situation is:

d2φ(x)
dx2

=
−ρ(x)
εs

= −dE(x)
dx

(B.9)

φ(x) is the electric potential, E(x) is the electric field, εs is the permit-
tivity of the semiconductor and ρ(x) is the volume charge density. ρ(x) is
only present in the deletion zone, see Figure B.2, and therefore it can be
expressed in the following manner:

ρ(x) = −eNa − xp < x < 0 (B.10)

ρ(x) = eNa 0 < x < xn (B.11)

An expression for the electric field in the two region can be driven by
integrating Equation B.9 and using the boundary conditions for the electric
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Figure B.2: The energy-band diagram for a pn junction in thermic equilibrium.

field, E=0 for -xp=x=xn. The electric field in the p-region can then written
as:

E =
−eNa

εs
(x+ xp) − xp < x < 0 (B.12)

A similar expressing describes the electric field in the n-region:

E =
−eNa

εs
(xn − x) 0 < x < xn (B.13)

Since the electric field is continuous at the junction, or at x= 0, a relation
between the width of the two space charge regions can be formed by setting
Equation B.12 and Equation B.13 equal to each other at x = 0

Naxp = Ndxn (B.14)

This relation will later be used to drive an expression for the space charge
width.

B.3 Potential

In this section an expression for the built-in potential barrier will be driven.
The potential in the junction is found by integrating the electric field in

the two regions and using the boundary conditions. When determine the
boundary conditions for the potential is it important to be aware, that it
is only the potential difference through the junction that is the important
parameter. Therefore the potential is sat to zero at x=-xp. Furthermore the
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potential is a continuous function through the depletion zone, which mean
the integrated electric fields are equal to each other at x=0. The expression
for the potential in the two regions i therefore given by:

φ(x) =
eNa

2εs
(x+ xp)2 − xp < x < 0 (B.15)

and

φ(x) =
eNd

εs

(
xnx−

x2

2

)
+
eNa

2εs
x2

p 0 < x < xn (B.16)

From Equation B.16 is it possible to calculate the size of the potential
barrier since it is equal to the potential at x = xn.

Vbi =| φ(x = xn) |= e

2εs
(Ndx

n +Nax
2
p) (B.17)

B.4 Space Charge Width

This section will utilize some of the expression that have been driven in the
two previous section to calculate the space charge width of a made-up pn
junction.

Firstly an expression for the space charge width in the n-region will be
driven. Equation B.14 can be rewritten to give:

xp =
Ndxn

Na
(B.18)

By substituting Equation B.14 into Equation B.17 and solving for xn

following expression for the space charge width in the n-region can be driven:

xn =
(

2εsVbi

e

[
Na

Nd

] [
1

Na +Nd

]) 1
2

(B.19)

An expression for the space charge width in the p-region can be driven
a similarly way to yield:

xp =
(

2εsVbi

e

[
Nd

Na

] [
1

Na +Nd

]) 1
2

(B.20)

The total space charge width W is the sum of Equation B.19 and Equa-
tion B.20:

W =
(

2εsVbi

e

[
Na +Nd

NaNd

]) 1
2

(B.21)

Vbi can be determined by Equation B.8.
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Lets consider a silicon pn junction at T= 300K with the doping densities
Na = 1016cm−3 and Nd = 1015cm−3, and then calculate the space charge
width.

Firstly the size of the built-in potential barrier (Vbi) have to be deter-
mined by using Equation B.8. At this temperature is the commonly used
value of ni 1.5 · 1010cm−3. The size of the built-in potential barrier is then
given by:

Vbi = 0.0259ln
[
(1016)(1015)
(1.5 · 1010)2

]
= 0.635V (B.22)

The space charge width of the pn junction is calculated by using Equation
B.21. The permittivity (εs) for silicon is 1.035 · 10−12 F/m.

W =
(

2 · 1.035 · 10−12 · 0.635
1.6 · 10−19

[
1016 + 1015

1016 · 1015

]) 1
2

= 951nm (B.23)

Using Equation B.19 and Equation B.20, the width in the two regions
can found. xp=0.864µm and xp = 0.086 µm.

88



Bibliography

[Alvarado et al., 1998] Alvarado, S. F., Seidler, P. F., Lidzey, D. G., and
Bradley, D. D. C. (1998). Direct determination of the exciton binding
energy of conjugated polymers using a scanning tunneling microscope.
Physical Review Letters.

[American Dye Source, 2006] American Dye Source, I. (2006). Light emit-
ting homopolymer for oled and pled devices. http://www.adsdyes.com/
products/pdf/homopolymers/ADS200RE DATA.pdf.

[Archer and Hill, 2001] Archer, M. D. and Hill, R. (2001). Clean Electricity
From Photovoltaics. Imperial College Press.

[Boman, 1995] Boman, M. (1995). Electronic Structure Calculations of
Conjugated Polymers, Metal/Polymer Interfaces, and Fulleride Polymers.
Linköping.
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[Chambers and Selmic, 2005] Chambers, D. K. and Selmic, S. (2005). Ad-
vanced characterization of the electronic structure of meh-ppv. Materials
Research Society.

[CRC, 2006] CRC (2006). Handbook of chemistry and physics. http://
http://www.hbcpnetbase.com/.

[Elektronikbutikken, 2006] Elektronikbutikken, Vesterbrogade, A. C.
(2006). Solpaneler cis. http://solkraft.dk.

[for Testing and (ASTM), 1999] for Testing, A. S. and (ASTM), M. (1999).
Solar spectral irradiance. http://rredc.nrel.gov/solar/spectra/
am1.5/.

89

http://www.adsdyes.com/products/pdf/homopolymers/ADS200RE_DATA.pdf
http://www.adsdyes.com/products/pdf/homopolymers/ADS200RE_DATA.pdf
http://search.eb.com/eb/article-9068559
http://search.eb.com/eb/article-9068559
http://search.eb.com/eb/article-231396
http://http://www.hbcpnetbase.com/
http://http://www.hbcpnetbase.com/
http://solkraft.dk
http://rredc.nrel.gov/solar/spectra/am1.5/
http://rredc.nrel.gov/solar/spectra/am1.5/


BIBLIOGRAPHY

[Group442, 2006] Group442 (2006). Group 442. of Aalborg University.

[Kittel, 2005] Kittel, C. (2005). Introduction to Solid State Physics. Wiley.

[Krebs, 2006] Krebs, F. (2006). Risoe. www.risoe.dk.

[Krebs et al., 2004] Krebs, F. C., Alstrup, J., Spanggaard, H., Larsen, K.,
and Kold, E. (2004). Production of large-area polymer solar cells by
industrial silk screen printing, lifetime considerations and lamination with
polyethyleneterephthalate. Solar Energy Materials ans Solar Cells.

[Krebs et al., 2005] Krebs, F. C., Carlé, J. E., Cruys-Bagger, N., Andersen,
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